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Abstract

Imagine a videogame in which you impersonate a wizard who needs to create a
potion by stirring substances in a cauldron. Through a desktop haptic probe, you are able to
stir and feel how the fluid changes its viscosity, velocity and other properties. So far solid or
deformable objects have been experimented for haptic-tactile feedback. In this thesis we
innovate by devising techniques that enable the haptical rendering of shape-less objects,
such as fluids. We achieved the real-time 3D fluid simulation of multiple substances based
on the Navier-Stokes equation and coupled it with a discreet mass-spring particle system
representing its deformable surface. We overcame the challenges that arise during the
integration of both haptics and graphics workspaces, the free-view visualization of 3D fluid
volume, and the rendering of haptic forces. Our system is flexible to accommodate different

kinds of fluids, such as liquid and smoke, to be co-simulated.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

Numerous people deserve recognition for their parts in my Master’s studies. First of
all, I would like to express special thanks to my thesis supervisor, Prof. Won-Sook Lee, for
her guidance, support and encouragement to complete my master studies. I extend my
thanks to my research colleagues at the DISCOVER LAB for their cooperation and
discussion during this work. The University of Ottawa provided me with funding during my
master studies, for which I am also very grateful and appreciative. Special thanks go to my
family and friends, for their endless understanding, encouragement and support. I would also
like to thank Fuel Industries, for offering me a flexible schedule that let me balance my

professional and academic life.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents

Abstract ii

Acknowledgements fii

List of Figures vii

List of Tables ix

Glossary of Terms X
Chapter 1 Introduction

L1 MOTIVALION...cuveiiiiiriieicereeeniee e cteneesneen et e ssn e e steesessseseeseseessassnassnessesnsessasnneen 1

1.2 Problem Statement. . .........cooiiiiieeee ettt e e eeeeas 4

1.3 Proposed SOIHON......c.veecueeecerniiieeiteeieeesieesiee et rrt e sre s e e s e asessneesnassensssananennes 5

1.4  Document Organization and System OVEIVIEW ..........cceeeeevemmrrrrrersnersrersnensenseeeees 6

Chapter 2 State of the Art 8

2.1 FIuld MOAEHNG.....c..ueirerireieeeerntirrieeseeeenestessnessnessssessraesssasssssessnsesssesssnssssnsessnes 8

2.1.1 Fluid Flow Tracking APPTOaches ..........ceeevveeireevrrrricenreeeenneessseseesseseessneessnens 9

2.1.1.1 Navier-Stokes EQUAtiON...........cccccvvrrrrieririrnresirerrssersesseeeresseesessesesssseenenns 10

2.1.1.2  Lagrangian SChEmES ...........ccoceeremruerieniereiiienieereseeesieseeeee et eessseenneene 13

2.1.1.3 Eulerian Grid-based Approachi............ccccceevrvvieverrencoreieernrriecneeressneenanns 14

2.1.14 Literature Review on Flow Tracking Approaches............cccccevvrerurennnnnen. 15

2.1.2 Other APPIOACRES .......oceeiiiiiviereertrirtrerecerreerrareesres e esstesrassesneeessesessnernrens 18

2.1.2.1  Procedural FIUid.......ccccoccoviiimmrnieiieniiieniecinree e s esne e s esene s neens 19

2.1.2.2 HeightField ApproXimations............ccceeeveceeruecrerecreseerseseensessrscesnessassnesss 20

2.12.3 Implicit Modeling for Deformable Objects...........ccecvvvevvieceececieceeeenee. 22

2.1.3 Discussion on Fluid Modeling...........c.ceeevvivcrvmrrrinvinnnenesseeesecresssneeeerveeeens 25

2.2 Fluld ReNEring.......ccccoiiiiiiiviiiiiiiiiiiiiirecnteeiesreeestee s e e s tessae s sna e neeessnaseeenns 26

221 RAYITACING ...ttt et snt et e ees 27

2.2.1.1  VOXEIRENAEIING .......ooviriirrrreiecerniriiteenieecteeesrteessee s evseene s e senaeenesenns 28

2212 SPIAING ...oeoneiiiiiiieeteete et as e s nne s anans 29

2.2.1.3  Shear-Warp Rendering............coccevvvvvrrviviernensiiniennneensieeeesseeseesseecneenens 30

2214  SHCES TN 3D TEXIUIES ......cocuveeeeerrieeieesreseeeereeee e e e eeeeeeveesereseeneeenneennns 31

222 Surface Reconstruction TeChniques..........cocvvrvvivierenererreecrcnressernrevesseessnes 32

w

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



223 Off-line Rendering ToOlS .........ccccocvimiiiiiniiinciiciini e 33

2.2.4 Discussion on Fluid Rendering Approaches ..........c.ccovveervceeerreriresseecrcncennnaes 34
2.3 Haptic RENdErng.......c..coiviriciiriiiniiiiicercetcneetr e e snenee 36
23.1 DEVICES .. erreeeieeieee vt e e et a s e s e e st eeaeasrsaeaesseeeanbaneeseesnsranesaesnnns 39
232 Haptic Forces and TEXIUTES..........cocoerniiimiiiieniiiecnrecccrcneeeeccece e neaes 43
233 Discussion on Haptic Rendering Approaches...........ccccevevvvrvveererecveecnvenrnns 45
2.4 Haptic-Fluid Integration ............ccccoevcevrerirninniencniceniececseenessecetce e ecsaeeanes 47
2.4.1 A Fluid Resistance Map Method..........ccoivvvvrrivrrcrerirernieeensrrereeeresemrnssesssennes 47
242 Physically-Based Model for Interactive Digital Painting ..............ccccceeveeenee 48
Chapter 3 Fluid Flow Processing Stage 50
3.1  Real-time Fluid SIMUlation..........c..cccoiirrreeniinnnectieniee et seaees e sneeens 50
3.1.1 Solving the EQUAtIONS ......c.ccccereivierieerriinirerereencerneeeeeesneeeeeceeeeenneesneeas 52
312 Simulation Extension t0 3D ........ccccvvviriiniimnincicenerreceec e 63
313 User Interaction and External Forces..........oovveveiiiiiiniiinrinciiiiicincceene 64
3.14 Fluid Simulation of Multiple Substances..........ccccceeveveiiriniimrenerirrneccenneennes 67
3.2 Surface Deformation.........cccccovriirieiiiimniiieieneere et et 68
3.2.1 Deformation PrOCESS.......cceiieiieiiiiierecirieeeeicnreeeeessiieeseessannseesresennseesssssssesas 70
322 Damping LAYETS ........cccocverrerrnmrreiererirueerosrnrersessensseserssssnnesesssassessssessrnseseses 74
323 Resolution Trade-Off .........couveiiiniiniiceien e 75
3.3  Coupling Graphics and Haptics Workspaces.........ccocevvvrerercvenerrenrercnveeereneeseenes 76
Chapter 4 Hapto-Visual Rendering Stage 81
4.1  Volumetric Haptic Rendering — Force FeedbacK............cccccoeeevvervennee e 81
4.2  Free-View Volumetric ViSualization...........cccceeeoivririrereecereiirnreerceresceeseaeseeennns 86
4.3  Integration of Hapto-Visual Rendering ROutines.............cccceevveverrerverernveeeneenneennns 95
4.4 Validation.......ccccoeiiiiiiiiieieeecieercrrtrrtese e ee st e e sane s e e e e ste s s s e s sae e e ae e nneebeesennennns 99
Chapter 5 Enhanced User Interaction Application — Gesture Recognition........ccceue.e.. .101
5.1  Creation and Storage of the Master Gesture Templates..............ccccevevervevrerrennne 103
5.2  Normalization of the Strokes ..........coeevviiiieriiiiriiccereceeee e 103
5.3 Recognition of the Test Motion Shapes..........cccccvviirnrirrereneernivenereereeeeereeenn 104
531 Neural NetWOTK ......ccccooviiieiriiecceee e 104
532 DOt ProdUCt.........ooveiiieiiieieier ettt re s e e s e ee e s s rnnes 105
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 Recognition RESUILS.........ccceeriiniiiiiiiiirencniiciercsenireirceceessnneeesreseeesesnesssnesssees 105

Chapter 6 Conclusions 109
6.1  CONIIDULIONS......ccovtiriiiieiieiieieeiiercstn sttt sbeer e see e ssaessnes s s 110
6.2 DHSCUSSION ..c..uveereeeieiieeeeeceeiteeeitteetreseee st essteesee et e e nesereesssseeesnesaaseseseessnneesnes 110
6.3  Future Research............coocormiiiiiinecicnecccee ettt 111

References 112

Appendix A: Solver Code ’ 120

Appendix B: System Video Storyboard 124

Related publications by the author .... 126

Other publications by the author 126

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

Figure 1: (a) 3D fluid interaction with haptic probe with force feedback in laptop
environment. (b) Deforming the fluid surface and generating surface tension force
feedback. (c) Side view of the inner fluid simulation with the green haptic probe inside. A
red and a green substance are added into the simulation and the user stirs with the haptic

device until they mix together in the fluid. .........cccociviiiriinniniiiccece. 6
Figure 2: HLA Of OUI SYSIEIML.....c..cooiiiimiiiiiiirreeeciirere sttt re e s s aesssassane 7
Figure 3: The "genesis effect” particle system from Star Trek IL..........ccoveivevnnnriiiennicnnee. 8
Figure 4: Newton's Second Law 0f MOLION .......c.covvieriieeieeniiiriiecneenic e eseeeeeeesveeene 10
Figure 5: In a Lagrangian approach, we follow a parcel of fluid as it moves. An example

would be to measure water temperatures from a moving boat.........c...covveeeciiiiiiiiccinnen. 14
Figure 6: An Eulerian approach looks at fixed points in space and see how the fluid

quantities measured at those points change in time. ............coecveevrreererriernrenncceereceneeneeees 15
Figure 7: Using a procedural waver model, Hinsinger et al. restrict computations to the

visible part of the ocean surface [HNCOZ]. ........cooriiiiiriineiecee e 20
Figure 8: Illustration of the limitation that applies to height fields (2D equivalent). :

Left:(x,y)=(fx[sLfy[s]). Right:(X,¥) = (X, fIX]) cceerererrrrerrrirrrrerciicecrreceeeeeeecneereeane 21
Figure 9: Fluid effects in Maya using 2D height field [AUTODESK]........ccccceeivriecurncane. 22
Figure 10: Closed elastic membranes filled with viscous compressible fluid. [NL02]......... 24
Figure 11: Metaballs in lava lamp [FAROT]. ....c.c.covreiiiiiiiiceceereieereceee e e 25
Figure 12: Voxels are drawn directly on the SCreen .........cccoocevvvvvnvccvccciicricccvvrcnncreenenns 29
Figure 13: Volumetric rendering using 3D textured SHCES ...........coveveveeererrrerervenrneeaeeernnns 32
Figure 14: (a) Glass particle swirl. (b) Iso-surface created via marching cubes. [MCGO03]..33
Figure 15: Penalty-based haptic 1endering............ccccevvveeiiieerrirenreerirerniecrenereseresnesssneesssennns 38
Figure 16: Left: Exoskeleton device [VRAC]. Right: CyberGlove [IMMERSION]............ 40
Figure 17: Left: The Novint Falcon [NOVINT]. Right: The Sensable Phantom Omni

[SENSABLEL. ..ottt ettt sttt sttt e sns s e e e ssasesasennessaeen 42
Figure 18: Treadport, Sarcos Inc. [SARCOS]......oovrerrrrerrirrrenrienreevertenneesreesneeesneses 42
Figure 19: Left: Sidewinder Force feedback Joystick, Microsoft [MICROSOFT]. Right:

Tactile Display [TEFCOT] ...t ereree et err e s e e s ee e s nane s mmees 43
Figure 20: Dobashi's et al. large simulation setup [DSH*06]. ......ccccocveeivvvreveverrrcreiennne 47
Figure 21: Screen capture of Baxter and Lin painting application [BLO4]........................... 49
Figure 22: Organization of a fluid simulation's volumetric data..............cccccocooiinneinnee 53
Figure 23: At every time-step we resolve the three terms appearing on the right hand side of

the density EQUALION. .......coiuuirireeetirieiec et et e et st esecetesneeenesnesnnens 55
Figure 24: Through diffusion each cell exchanges density with its direct neighbors............ 56
Figure 25: Substance is inserted into the simulation through the tip of the haptic device.

Device is moving in the direction of the arrow introducing a force. ..........cccovvevcveennennee. 56
Figure 26: The advection step moves the density through a static velocity field. The red

short line segments are the current and the white regions contain high denstty. ............... 58
Figure 27: Basic idea behind the advection Step. .........coceeeveivieieniincenenereeee e 60

Figure 28: Using Hodge decomposition to obtain an incompressible field [STAO1]. Up left
most image shows velocity fields, up-middle image shows mass conserving fied and the
up-tight one shows gradient field. ...........cocovirieioinriinereee e 61

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 29: Force added by the device. ..., 65
Figure 30: Output force f with respect to input force (distance y), in terms of surface stiffness

Figure 31: Simulation of mulnple substances. A red and a green substance are added into the
simulation (t1-t2). The user stirs with the haptic device until they mix together in the fluid

(B380). ..ot e et et r ettt et s 68
Figure 32: Draft of a deformable surface. Weighted particles move according to user’s
RAPHIC INLETACHION. ........oiiiiiiiiiiiiieiie ettt ettt e e e et e e abe e e sseeeaeeebaeesseesasaeenns 70
Figure 33: Damped Layers. ............oooooiiiiiiii e 74
Figure 34: Matching boundaries between Workspaces. ....................ccccooeviiiiieeieiieee, 78
Figure 35: Haptic Collision Response. ... 82
Figure 36: Fluid flow vector field.......................oooiii e 84
Figure 37: The current flow influences the movement of the haptic probe. ......................... 85
Figure 38: Smaller alpha transparent cubes are sorted based on their distance to the camera.
Each small cube face interpolates the color of the 4 vertices that formit.......................... 88
Figure 39: Rendering artifacts produced by alpha-blending when faces are not sorted by
distance tO the CAMETA. ...........ocoiiiiii e 88
Figure 40: OpenGL’s transformation MmatriCes....................cccooovvieeiiiiiiieeieeeiceeie e 89
Figure 41: Types of Vertices in a Cubical Grid........................ooi 90
Figure 42: Architecture of @ 3D teXtUIe. ............oooiiiiiiiiiiiciic e 92
Figure 43: Texture represents changes in fluid caused by surface deformations................. 93
Figure 44: Samples of our rendering approach results. (a) With surface guide. (b) Without
SUMTACE GUIAC. ...t 94
Figure 45: HLAPI Program StruCture. .............cc.oooviiiiiieiiiiiiieieec et 97
Figure 46: Game SCeNAriO..........o.ooiiiiiiiiiiieeie e 101
Figure 47: Creation of the master gesture and the comparable gesture............................. 101
Figure 48: Gestures must be normalized in order to have unbiased comparisons. ............. 103
Figure 49: Center the gesture at the origin of the coordinate system. ................................ 104
Figure 50: Recognition triggers changes in fluid parameters (e.g., fluid viscosity increase)
plus appearance of buoyant smoke. ...................cccoooiiiiiiii 106
Figure 51: Different fluid workspaces. ................oocoooiiiiiioie e 106
Figure 52: Smoke above the surface...................cccooiiiiiiii i 107
Figure 53: Surface integration with fluid and smoke workspaces..................................... 108
viti

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

Table 1: System resolution trade-off..............cccoviremrieiincrnir e 75

Table 2: Comparison with Dobashi’s Approach. .............ceceveveerrcenrirncnvnnnerecrreenrcenrereenes 94

Table 3: Comparison with Baxter and Lin's Approach........c...cccccoeeveiiiiiniinnnrinnnicneninecnnns 95

Table 4: Main differences between HDAPI and HLAPI. ..........cccocciiiiiniiniiiiiiniiniiinne 98

Table 5: Summary of survey findings. ........cccccceerrvrienerriienencir e 100
e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Glossary of Terms

2D  Two Dimensional

3D  Three Dimensional
DOF Degrees of Freedom
HIP Haptic Interface Point
HLA High Level Architecture
PC  Personal Computer

VR  Virtual Reality

FPS Frames per Second

1I/0  Input and Output

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1 Introduction

1.1 Motivation

A fluid, such as liquid and gas, is a substance which deforms continuously under a

shear stress. Examples of fluid phenomena are gas, smoke, wind, ocean waves, waves

induced by ships or simply pouring of a glass of water. As simple and ordinary these

phenomena may seem, as complex and difficult it is to simulate them.

Automating the animation of fluids is important as it would be extremely hard to
animate fluids by hand due to the facts that surface is changing very quickly and it contains
lots of small details. The reason for the complexity of fluid behavior is the complex
interplay of various phenomena such as convection, diffusion, turbulence and surface
tension. Animating fluids is extremely complex and CPU intensive animation technique
available. With the computational power of next generation game consoles and PC’s more
and more physical effects — so far only seen in feature films — are now entering the realm of
real-time applications such as three-dimensional computer games. There is, however, still a
big gap between pre-computing a physical effect for many hours on a farm of workstations
and simulating the effect in real-time, typically at 30 _ 60 frames per second on a single
console.

Meanwhile, Haptics, which refers to the technology which stimulates the users’
sense of touch, has been increasing in popularity because of the powerful enhancements that
it brings to the human-computer interaction experience. Haptics allow users to literally touch
and feel characteristics about computer-generated objects such as texture, roughness,
viscosity, elasticity, and many other properties. The human tactile and kinesthetic senses are

stimulated through computer-controlled forces which convey to the users a sense of natural
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feel about a virtual or remote environment. Such interaction exposes characteristics about
the object which cannot be easily purveyed using graphical or acoustic displays. Unlike
these other graphical or acoustic displays, haptic devices offer a bi-directional human-
machine interface, providing both input and output for other senses as well. As outlined by
Hayward et al. [HAC*04], a distinguishing feature of haptic interfaces is that they respond
to human gestures by generating tactile and kinesthetic cues creating a simultaneous

exchange of information between the machine and user.

So far solid or deformable objects have been experimented for haptic-tactile
feedback. Our motivation is to produce a system that brings human-computer interaction to
real-time fluid animations, so that users can appreciate and feel the properties of a fluid
simulation via a haptic interface (see Figure 1). Our haptic interaction with a pool of water is
the world first experiment. This integration could benefit a wide-spread of applications in

the following areas.

TRAINING OF TECHNICAL EQUIPMENT

In combination with audio and video displays, haptics technology may be used to
train people for tasks requiring hand-eye coordination, such as ship docking maneuvers. In
the scope of our research, hapto-fluid integration may be used to guide in virtual fishing
tasks, or paddling through a small current flow. It may also be used as assistive technology

for the blind or visually impaired.

APPLIED SCIENCE RESEARCH

Hapto-fluid integration may be used to aid in testing fluid dynamics. Some science
fields such as Astronomy, Chemical Engineering, Oil Engineering, and Fluid Mechanics
could benefit from this research. Astronomers could modify and test different fluid

simulation parameters such as gravity changes from various scenarios. Engineers could
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model different reactions that could happen when mixing substances of different chemical

properties. Oil Engineers could study and physically feel the viscosity of oils, among others.

MEDICINE APPLICATIONS

Haptics allows surgeons, for instance, to feel realistic touch sensation when training
to perform laparoscopic surgery [SRI00]. The Laparoscopy VRTM [IMMO07] is a hapto-
visual display designed especially for this task. Incorporating haptics as part of surgical
simulation is an application of notable importance because it has been shown to increase the
overall success rate of surgeons during training [HWS02]. The touch models used by these
applications need to be able to accurately purvey tactile and kinesthetic information to the
surgeon about the medical probe as it comes in contact with virtual human organs (e.g.,
during slicing, cutting, suturing, puncturing, poking or interfering with a blood flow).
Otherwise, the surgeon may apply too much force, causing tissue trauma, or too little force,
failing to perform a procedure correctly. In the scope of our research, hapto-fluid integration
may be used to analyze the motion of hearts ventricles, or to simulate the blood flow in a

patient’s cardiovascular system to enhance the realism of the haptic training.

THE VIDEOGAME INDUSTRY

The videogame industry can also serve from this technology
[GSKO7][AML*06][MNS04]. Haptics would allow players to feel the physical properties of
in-game objects, adding an extra level of interaction that traditional interface devices do not
offer. Nintendo’s recent Wii™ games [NINTENDQO)] are an example of the industry’s interest
for higher interactive applications. HaptiCast [AML*06], a haptic game developed by the
thesis author and colleagues, investigated the use of haptic metaphors in 3D first-person
shooter style video games. Players are given a series of haptically enabled wands which
offer various methods of interacting with the game world. The lift wand allows a player to

pick up and feel the weight of any object in the game world. The lob wand acts like a haptic
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slingshot, and the blast/bolt wands shoot fiery recoil blasts. Response to the game was
extremely positive from users who played the game, including Professor Perlin [PER85],
who commented on the potential to see haptic technology integrated into future videogames.
Haptics can increase the realism of game simulations and thus increase their overall
entertainment value.

In the scope of our research, hapto-fluid integration may be used to enable game
scenarios that involve fluids. For instance, a witch flying a broom on a stormy sky could be
exposed to wind flow. A wizard stirring a cauldron could feel the viscosity of the mixture

while creating a magic potion.

1.2 Problem Statement

This thesis addresses the problem of developing a system that brings human-
computer interaction to real-time fluid animations, so that users can see and feel the

simulation properties of a fluid, a shape-less object, via a haptic interface. In order to solve
this problem, we focus on two main issues:

¢ Real-time fluid animation: how to stably represent a fluid simulation in real-time and
render it on the screen at an acceptable frame rate of approximately 30 frames per
second.

* Haptic interaction with the fluid: how to haptically render the simulated shape-less
fluid to the user. The haptic probe must also interact with the fluid surface and be
able to modify the current flow generated by the simulation.

In addition, we also discuss

e Haptic gesture recognition as an interactive application for haptic games.
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1.3 Proposed Solution

This section briefs the solution to the problem stated in the previous section. The
proposed solution consists of the following techniques:

* Use computational fluid dynamics to model a three-dimensional fluid flow.

¢ Couple the fluid with a deformable surface which deforms with the haptic touch.

* Use the output of the fluid simulation to represent a variety of haptic feedback modes
such as the rendering of surface tension, viscosity, and current flow. In viceversa, the
device inserts back forces that modify the fluid flow.

More specifically, our solution includes the following more technical approaches:

* Match haptic and graphic coordinates through a mapping function to achieve the
coordination of hapto-visual I/O and the maximization of the workspace area.

¢ Use a three-dimensional grid structure to represent the state of the fluid simulation
and model the flow motion based on the Navier-Stokes equations.

* Calculate forces that originate from the flow equations of the pool of fluid and render
them to the haptic device.

* Use a deformable and discreet mass-spring particle system to represent the fluid on
the surface. The surface deforms with the touch of the haptic probe and propagates
the applied deformation to the fluid represented on the 3D grid.

* To achieve volume rendering, slice the 3D grid into planes that are perpendicular to
the line of camera sight. Apply gradual alpha transparency to the slices and sort them
based on their distance to the camera. Continuously construct a 3D texture based on

the fluid simulation data, and proceed to texture the slices with this information.
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* Based on the workspace boundaries, the surface deformation, the velocity field and
density values of the fluid simulation, render a set of haptic effects in order to

achieve the kinesthetic feeling of a fluid in motion.

Publications based on the work from this thesis appear at the end of this document.

1.4 Document Organization and System Overview

Figure 2 shows the high level architecture (HLA) for our system. It displays the two
main stages of our system and illustrates the data flow for generating hapto-visual 3D flows
from the fluid simulation. These stages are namely the fluid processing, and the hapto-visual
rendering of the simulation. The fluid processing stage computes the fluid simulation and
the grid deformation at each time-step. The hapto-visual rendering stage consists of
presenting the output to the user via the haptic device, through haptic rendering, and via the
monitor, through graphic rendering.  Detailed discussion of these stages and their

components occur in the ensuing chapters.

@ ®) ©

Figure 1: (a) 3D fluid interaction with haptic probe with force feedback in laptop environment. (b) Deforming
the fluid surface and generating surface tension force feedback. (c) Side view of the inner fluid simulation with
the green haptic probe inside. A red and a green substance are added into the simulation and the user stirs with
the haptic device until they mix together in the fluid.
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Figure 2: HLA of our system.

In Chapter 2 of this thesis we present a literature review on haptics as well as on real-
time fluid animations. In Chapter 3 we present the fluid processing stage of the system,
which includes the solution of the flow equations, a description of the surface deformation
process and the integration between graphics and haptics workspaces. Chapter 4 discloses
the hapto-visual rendering algorithm along with the presentation of the haptic force
calculations. As an application in computer games, a haptic gesture recognition module is

described in chapter 5. We present conclusions in chapter 6.
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Chapter 2 State of the Art

In this chapter, we discuss literature review on fluid simulation and haptic rendering.
Section 2.1 introduces some of the approaches to model fluids and section 2.2 describes
techniques to render them on the screen. Section 2.3 presents previous research on haptic
rendering. Finally, section 2.4 discloses previous work on Haptic-Fluid integration and how

it compares with our approach.

2.1 Fluid Modeling

A fluid modeling approach depends on the specific application. For example when
simulating a fountain, a waterfall, or a jet of water then some sort of particle system would
be the most efficient implementation, while when displaying a flame or smoke with more
flow realism we would like to use fluid flow tracking approaches, such as Computational

Fluid Dynamics (CFD).

Figure 3: The "genesis effect” particle system from Star Trek II [REES83].

Particle systems, such as the one shown in Figure 3, simulate certain fuzzy
phenomena which are controlled by an emitter. The emitter acts as the source of the

particles, and its location in 3D space determines where they are generated. The emitter has
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ched 1o it a set of particle behavior paramecters. These parameters can include the

spawning rate (how many particles are generated per unit of time), the particles' initial
velocity vector (the direction they are emitted upon creation), particle lifetime (the length of
time each individual particle exists before disappearing), particle color, and many more.
These systems don't have smooth well-defined surfaces and are non-rigid objects [REE83].
Computational Fluid Dynamics [LL75], on the other hand, is a computer-based
mathematical modeling tool that incorporates the solution of the fundamental equations of
fluid flow, the Navier-Stokes equations, and other allied equations. Computers are used to
perform the millions of calculations required to simulate the interaction of fluids and gases
with the complex surfaces used in engineering. However, even with simplified equations
and high-speed supercomputers, only approximate solutions can be achieved in many cases.
The following sections present different approaches to model fluids. If a volumetric
fluid flow needs to be tracked in time, then CFD approaches presented in section 2.1.1 may
be best suited to target the problem. On the other hand, if the interest is to directly simulate
the physical effect of fluids or their surfaces instead of simulating the causes of it, other
approaches presented in section 2.1.2 may be used. Some of the approaches presented in

both sections may be combined together to offer more accurate simulations.

2.1.1 Fluid Flow Tracking Approaches

When volumetric fluids are in movement, they generate fluid flows which may be
perceived as vector fields. Computational fluid dynamics (CFD) is one of the branches of
fluid mechanics that uses numerical methods and algorithms to solve and analyze problems

that involve fluid flows. The fundamental bases of any CFD problem are the Navier-Stokes
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equations, which define any single-phase fluid flow. When we think about a continuum (like
a fluid or a deformable solid) moving, there are two main approaches to track this motion,
the Lagrangian viewpoint and the Eulerian viewpoint. Both viewpoints are useful when
trying to solve the Navier-Stokes equations. The next sub-sections explain each of these

viewpoints, the theory behind the fluid equations, and a review of related work in this area.

2.1.1.1 Navier-Stokes Equation

The Navier-Stokes differential equations are a set of partial differential equations
(PDEs), which describe the motion of viscous incompressible fluids. This means that all
properties of the fluid are described exclusively by its viscosity and density. These equations
are based on the assumption that fluids can be described as a collection of particles. The
terms describe the forces acting on a particle, derived by observing the behavior in a unit
cube around the particle. This is done under the assumption that the fluid inside this unit
cube behaves uniformly. To better understand the tracking of flow motion, we now present a
more comprehensive definition of the Navier-Stokes equations.

The Navier-Stokes equations were derived from Newton’s second law of motion

(see Figure 4), which states that:

-

f=m-a

Figure 4: Newton's Second Law of Motion

where m is mass, a is acceleration, and f is force. They describe the changes in a velocity

field, i.e. the acceleration of the fluid, as a sum of the forces acting on the fluid — including
forces introduced by the fluids own movement. In a compact vector notation the Navier-

Stokes equations are presented as:

i
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The four terms on the right-hand side of the Navier-Stokes equation represent accelerations.
The first term represents external forces, the second term is advection, the third is diffusion,

and the last one is pressure. In these equations 7 is time, # is the velocity, p is the density

of the fluid, 7 is the force field, v is the kinematic viscosity of the fluid, V is the gradient

operator and p is pressure. We will examine each of them in turn.

External Forces
The first term in the Navier-Stokes equations represents external forces and is given

by the following expression:

f==U 10 &)

o |-

1
o
where the force field f’ =(f* f7?,f) is the sum of all external forces working on the
fluid, and p is the density of the fluid, which describes the mass of a unit cube of fluid.
Because # is a vector quantity, there are four equations and four unknowns: %, v, w, and p.
Advection
The second term in the Navier-Stokes equations represents advection and represents
the force of the fluid motion working on itself. This can be thought of as the molecules in a

fluid bouncing into each other. If one molecule bumps into another molecule, the other

molecule is affected and will start moving. The contribution of advection is described by:

11
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whereV is the gradient operator, and @ = (u*,u”,u*)" is the velocity.
Diffusion

Diffusion occurs when part of the fluid passes by an obstacle, or another part of the
fluid with a different velocity. The fluid is slowed down and vortices appear. The

contribution of diffusion is described by the term:

i’ Wt
w ay? o

- 62 y 2.y 2,y
Wiy I8 oW S 0)
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8%u® N 8%u* . 8u*
ox? ay’ 9z>

where v is the kinematic viscosity of the fluid, which describes the “thickness™ of the fluid.
Hence, diffusion is also referred to as the effect of viscosity. Some fluids are “thicker” than
others. For example, molasses and maple syrup flow slowly, but alcohol flows quickly. We
say that thick fluids have a high viscosity. Viscosity is a measure of how resistive a fluid is
to flow. This resistance results in diffusion of the momentum (and therefore velocity), so the
third term is called the diffusion term.
Pressure

Fluid moving in and out of the observed unit cube causes the pressure to change.
Differences in pressure between the unit cube and its surroundings affect the velocity as

described given by

12
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where p is still the density of the fluid and 5 is the pressure. Because the molecules of a
fluid can move around each other, they tend to “squish” and “slosh”. When force is applied
to a fluid, it does not instantly propagate through the entire volume. Instead, the molecules
close to the force push on those farther away, and pressure builds up. Because pressure is
force per unit area, any pressure in the fluid naturally leads to acceleration. (Think of
Newton’s second law, f =m-a). The fourth term, called the pressure term, represents this
acceleration.
Incompressibility

If the relative speeds within a flow are low enough, thermodynamic effects and
density changes due to changes in pressure become negligible. If density is constant and
mass is conserved so is volume. Essentially what goes into a differential volume must exit it
simultaneously. Coupling this equation with conservation of momentum makes the system
fully determined, without need of the energy equation or an equation of state, and yields
extremely efficient simulations. This condition is expressed mathematically as the
divergence of velocity is zero (V-u =0).

There have been two main simulation approaches to track the fluid motion described

by the Navier-Stokes equations: the Lagrangian viewpoint and the Eulerian viewpoint.

2.1.1.2 Lagrangian Schemes

The Lagrangian approach [LL75] (named after the French mathematician Lagrange)

treats the continuum just like a particle system (see Figure 5). Particle systems are

13
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essentially a mathematical formalism used to describe phenomena that are complex,
dynamic and highly parallel with small individual components. Particle systems are context
insensitive, meaning they can be used to model very different situations. The particle system

1s a tool, but does not imply a specific use-case in itself, By changing some of its inner

components, it can be suited to many problems.

Figure 5: In a Lagrangian approach, we follow a parcel of fluid as it moves. An example would be to measure
water temperatures from a moving boat.

In the Lagrangian approach, each point in the fluid or solid is labeled as a separate
particle, with a position ~x and a velocity ~u. One could even think of each particle as being
one molecule of the fluid. Solids are almost always simulated in a Lagrangian way, with a
discrete set of particles usually connected up in a mesh. Examples include work by Muller et
al. [MCGO03] and Clavet et al. [CBP0S5] based on Smoothed Particle Hydrodynamics
[MON92][OH95]. Reconstructing a smooth surface from the particles remains challenging,
though recent work on point based level sets by Corbett [COR05] is promising. Vortex
particle and vortex filament methods [ANO5][ANS*06] for the simulation of smoke also fall

into this category.

2.1.1.3 Eulerian Grid-based Approach

The Eulerian approach [LL75] (named after the Swiss mathematician Euler) takes a

different tactic, that’s usually used for fluids. Instead of tracking each particle, we instead

14
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look at fixed points in space and see how the fluid quantities (such as density, velocity,

temperature, etc.) measured at those points change in time (see Figure 6).

X

Figure 6: An Eulerian approach looks at fixed points in space and see how the fluid quantities measured at
those points change in time.

This approach uses discrete function values throughout the computational domain,
on a regular volumetric grid. Foster and Metaxas [FM96] began the current research thrust
in Eulerian fluid simulations for animation. Their method has been used for liquid, smoke
[FSJO1] and sand simulation [ZB05]. Their technique has been steadily improved with
advancements in implicit surface tracking [EMF02][FFO01], unconditionally stable time
integration [STA99], adaptive grid construction [LGF04], and vorticity preservation
[SRF05]. For high quality smooth surfaces, Eulerian methods using level sets are typically
used. Here the surface is implicitly represented by the zero level set of a surface function,
which is usually the signed distance from the surface. This surface function is then advected
by the velocity field defined on the grid (often using particles to avoid mass conservation
errors in advection [EMF02][BFA02][HNB*06]). The main drawback of level set implicit
surfaces is their susceptibility to numerical dissipation, and inability to maintain areas of

high curvature.

2.1.1.4 Literature Review on Flow Tracking Approaches

The following chronologically summarizes a variety of publications that have

contributed to the field by using eulerian, lagrangian and hybrid approaches. If we
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chronologically look at the evolution of pioneering research in the computational modeling
of incompressible flows, we can go back to the 1950°s. The primitive variable approach
favored in computer graphics was pioneered by Harlow and Welch who developed the
Marker and Cell method (MAC) in 1965 [HW65], Chorin who developed the artificial
compressibility method in 1967 [CHO67], Patankar and Spalding who developed the semi-
implicit method for pressure linked equations (SIMPLE) in 1972 [PS72], and Issa who
developed the pressure implicit with splitting of operators (PISA) method in 1985 [ISS85].
The computer graphics industry has primarily focused on the work of Harlow and Welch
and the use of MAC grids.

Foster and Metaxas [FM96] describe one of the first methods for simulating the full
3D Navier-Stokes equations for computer graphics. The method is based on explicit
methods and only stable for small time steps. In fact, the time step must uphold the Courant-
Friedrich-Levy (CFL) condition [CFL67]. Foster and Metaxas [FM97] give an extended
version of the 1996 algorithm including the forces of thermal buoyancy. This means that
temperature is represented in the centre of each grid cell, defining a discrete temperature
field equivalently to pressure. The temperature field is advected and diffused using the same
method as with velocity. Stam [STA99] extends Foster and Metaxas [FM96] with the aim of
making the solver unconditionally stable. This method is further explained in Chapter 3 of
this thesis. Fedkiw et al [FSJO1] give a method for simulating smoke based on Stam’s
method. Under the assumption that the effects of viscosity are negligible in gases, when
simulated on a coarse grid, the diffusion term of the Navier-Stokes equations are left out,
leaving the incompressible Euler equations:

%gv(a-vw-vmf 7

1A
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V-u=0, ®)
where # is the velocity, p is the pressure, and fis the external forces. In order to make up for
the coarse grid representations, vorticity confinement is used to add the small scale detail
that has been damped out by numerical dissipation back into the velocity field. This is
further explained in the following chapter.

Stam [STAO3] presents a simple and rapid implementation of the Stam [STA99]
fluid dynamics solver for game engines with the Navier-Stokes equations. The algorithm
presented in Stam’s papers presents only 2D implementation. In this thesis, we expand his
implementation to 3D so that we can integrate it with a 3D haptic interface.

Losasso et al. [LGF04] present a method for simulating water and smoke on an
unrestricted octree data structure exploiting mesh refinement techniques to capture the small
scale visual detail. The paper proposes a new technique for discretizing the Poisson equation
on this octree grid with fast solution methods such as preconditioned conjugate gradients.
Harris [HARO3] presents a physically-based, visually-realistic cloud simulation suitable for
interactive applications such as flight simulators. Clouds in the system are modeled using
partial differential equations describing fluid motion, thermodynamic processes, buoyant
forces, and water phase transitions.

Guendelman et al. [GSL*05] present a novel method for solid/fluid coupling that can
treat infinitesimally thin solids modeled by a lower dimensional triangulated surface. Since
classical solid/fluid coupling algorithms rasterizing the solid body onto the fluid grid, an
entirely new approach is required to treat thin objects that do not contain an interior region.
Selle et al. [SRFO05] introduce a new hybrid technique that makes synergistic use of

Lagrangian vortex particle methods and Eulerian grid based methods to overcome the
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weaknesses of both. The approach uses vorticity confinement itself to couple these two
methods together and generates highly turbulent effects unachievable by standard grid based
methods, and show applications to smoke, water and explosion simulations.

Starting with the previously mentioned work of Foster and Metaxas in 1996 [FM96],
the amount of graphics research in modeling the Navier-Stokes with incompressible flow
has targeted different areas of research, including semi-Lagrangian advection [STA99],
vorticity confinement [FSJO1] [NFJ02], surface tracking [EMF02]
[LTK*07][EFF*02][BGO*06], surface tension [LGF04], surface flow [STA03*], splashing
surface waves [YHDO7][WYL*05][KDB*06], dynamic meshes [KFC*06], fire
[NFJO2][STAO00], viscosity [CMTO04][REN*04], visco-elastic modeling [GBO04], coupling
with rigid and deformable solids [GSL*05], smooth-particle hydrodynamics [MSK*05]
[PTB*03], multiple fluid flow [LSS*06], irregular boundaries [BBB07], and of course, sand
[BYMOS5] [ZB05] and explosions [FOA03] [NF99] [RNG*03] [TOT*03]. However, these
publications do not take into account any pertinent consideration to the integration of haptics

for the generation of force feedback.

2.1.2 Other Approaches

If the interest is to directly simulate the physical effect of fluids or their surfaces
instead of simulating the causes of it, other approaches may be used. Some of these
approaches, among others, may be combined with CFD mechanisms to improve the

accuracy of their simulation.

1R
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2.1.2.1 Procedural Fluid

A procedural method animates a physical effect directly instead of simulating the
cause of it [FR86][HNCO02]. A common way to procedurally generate the surface of a lake
or ocean, for instance, is to superimpose sine waves of a variety of amplitudes and directions
(See Figure 7). There are no limits to creativity when it comes to devising procedural
animation techniques. Everything goes as long as the method achieves the desired visual
effect. An advantage of procedural animation is its controllability, an important feature in
games. The main disadvantage of simulating water procedurally is the difficulty of correctly
getting the interaction of the water with the boundary or with immersed bodies.

Procedural methods for animating turbulent fluid are often preferred over simulation,
both for speed and for the degree of animator control. Perlin [PER85] used noise as a
method to mimic and model ocean waves by stochastically perturbing surface normals
(bump mapping) according to a superposition of randomly distributed spherical wavefront
sources. Bridson et al. [BHNO7] offer an extremely simple approach to efficiently
generating turbulent velocity fields based on Perlin noise, with a formula that is exactly
incompressible (necessary for the characteristic look of everyday fluids), exactly respects.
solid boundaries (not allowing fluid to flow through arbitrarily-specified surfaces), and

whose amplitude can be modulated in space as desired.
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Figure 7: Using a procedural waver model, Hinsinger et al. restrict computations to the visible part of the
ocean surface [HNC02].

2.1.2.2 HeightField Approximations

If we would only be interested in the animation of the two dimensional surface of a
lake or ocean, it would be an overkill to simulate the entire three dimensional body of water.
In this case, we could just only represent the surface as a two dimensional function or
height-field and animate it using the 2D wave equation. This simplification can make the
simulation orders of magnitude faster. The downside of this approach is that a function or
height-field can only represent one height value at each location on the plane. This makes
the simulation of breaking waves impossible. Kass and Miller linearize the shallow water
equations to simulate liquids [KM90]. The simplifications do not, however, capture the
interesting rotational motions characteristic of fluids.

A height field is a function of two variables that return the height for a given point in
two-dimensional space. The equation below shows how a height field can be used to

displace a plane in three-dimensional space.
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p heightfield (S’ t) =P plane (S ’ t) + f HF (S ’ t) ) N plane (9 )

Using a height-field as a representation for a water surface does have its restrictions
compared to a general surface. As the height field only represent a single height-value for
each point it is impossible to have one part of the surface that overlaps another. Figure 9
shows an example of a height field in Maya and Figure 8 shows a two-dimensional
equivalent of the limitation where the right image cannot represent the part of the curve that
overlaps.

The height field has many advantages as it is easy to use and it is easy to find a data
structure that is appropriate for storing it. It is often stored as a texture, which is called
height-map. The process of rendering a surface with a height-map is usually called
displacement-mapping as the original geometry (Pplane) is displaced by the amount defined

in the height map.

X
>

Figure 8: Illustration of the limitation that applies to height fields (2D equivalent). Left:(x,y)=(fx[s],fy[s]).
Right:(x,y) = (x, f[x])
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Figure 9: Fluid effects in Maya using 2D height field [AUTODESK].

2.1.2.3 Implicit Modeling for Deformable Objects

Soft Objects

We normally consider clay, skin, and water soft and concrete hard. However, almost
all objects will exhibit some degree of softness in extreme conditions. Soft objects are those
everyday objects that deform significantly in response to their normal environment.
Examples include cushions and plasticine among others. In some cases, viscous fluids may
be modeled using implicit techniques. Among the first to present a soft object model were
Wyvill et al. [WMW86] who represent a plasticine-like soft object using a combination of
an implicit function and a particle system. A simple approach is to use an explicit mass-
spring system, representing the object as a lattice of mass elements linked with springs.

Terzopoulos and Fleischer [TF88] use a physically based approach to simulate a
variety of deformable behaviors. They model objects using configurations of elastic,
viscous, and plastic units. They achieve such effects as sculpting with lumps of plasticine,

tearing leaves of paper, and pushing holes through fabric sheets. The models of Terzopoulos
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and Fleischer store the elastic properties of materials in a stiffness matrix. This is difficult
and expensive to compute. James and Pai [JP99] also use linear elasticity methods to model
plasticine-like deformable objects, but they use a boundary element (BEM) solver and can
achieve interactive real-time behavior by exploiting temporal coherence. Mass-spring
systems, in which a lattice of mass elements linked with springs represents an object,
provide an easier model of an elastic material. Miller [MIL88] uses this approach to animate
the soft bodies of snakes and worms. He sends compression waves down the mass-spring
system to produce locomotion of the animals.

The surface of a highly flexible substance should conform to the shapes of the
objects it presses against. Cani-Gascuel and Desbrun [CD97] use implicit surfaces to
achieve such an effect. In this model, skeletal primitives are enclosed in implicit surfaces.
The skeleton layer is inelastic and gives the soft object’s large-scale motion and shape. The
implicit layer is elastic and gives the exact surface shape. The model can handle collisions
between multiple soft objects and allows soft-object fusion. The model also provides
solutions to problems associated with implicit surfaces, particularly volume variation and
incorrect blending.

Nixon and Lobb [NL02] present a physically based model for animating soft objects.
The model consists of two components: an elastic surface and a compressible fluid. As
shown in Figure 10, the surface is represented as a mass spring system and the fluid is

modeled using finite difference approximations to the Navier-Stokes equations of fluid flow.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 10: Closed elastic membranes filled with viscous compressible fluid. [NL02]

Metaballs

If a particle system is used for the simulation, then a fluid can also be modeled using
spheres or metaballs in the positions of the particles, giving the impression of moving lava
blobs (see Figure 11). Metaballs, in computer graphics terms, are organic-looking n-
dimensional objects. This implicit modeling technique was invented by Jim Blinn in the
early 1980s [BLIS2]. Each metaball, or blobby object, is defined as a function in n-

dimensions. A thresholding value is also chosen, to define a solid volume. Then,

Zmetaball,. (%, v, 2) <= threshold (10)

represents whether the volume enclosed by the surface defined by n metaballs is filled at
(x,y,z) or not. When seeking a more efficient fall off function, several qualities are desired:

* Finite Support: a function with finite support goes to zero at a maximum radius.
When evaluating the metaball field, any points beyond their maximum radius from
the sample point can be ignored. A hierarchical culling system can thus ensure only
the closest metaballs will need to be evaluated regardless of the total number in the
field.

* Smoothness: because the isosurface is the result of adding the ficlds together, its

smoothness is dependent on the smoothness of the fall off curves.

4
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A simple generalization of metaballs is to apply the fall off curve to distance-from-
lines or distance-from-surfaces. The two most common rendering approaches for three
dimensional metaballs are brute force raycasting and the marching cubes algorithm, both

explained in section 2.2.

Figure 11: Metaballs in lava lamp [FAR07].

2.1.3 Discussion on Fluid Modeling

We would like to model a volumetric pool of fluid that generates current flows when
in movement. The fluid surface should also be modeled so that it can deform with the touch
of a haptic device. Therefore, procedural techniques presented in section 2.1.2 are not
appropriate as they do not take into account the causes of inner fluid flow motion. In
addition, implicit modeling may compress the fluid and generate discontinuous blobby
effects. Since we need to track a fluid’s flow field, CFD methods explained in section 2.1.1

are then more appropriate. An interesting CFD approach is Stam’s [STA03] presentation of
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a simple and rapid implementation of a fluid dynamics solver for game engines with the
Navier-Stokes equations. However, his algorithm presents only a 2D implementation and
does not take into account any incorporation of fluid surface deformations. Height-field
approximations were previously presented as an approach to represent a fluid’s surface.
However, as the height field only represents a single height-value for each point it is
impossible to have one part of the surface overlapping another part. In this thesis, we use a
mass-spring particle system to account for surface deformations and we further explain this
in chapter 3. In addition, we expand Stam’s implementation to 3D so that we can integrate it
with a 3D haptic interface and receive haptic force feedback in real-time. The next section

presents different approaches to render fluids to the screen.

2.2 Fluid Rendering

Simulating fluids is one part of the equation, but rendering them to the screen is
another significant issue. A three-dimensional fluid simulation produces volumetric data.
This data is organized in the same manner as a two-dimensional image, but generalized in
three dimensions, essentially a three-dimensional grid. When this grid is discussed in a
rendering context, the individual cells are often referred to as voxels, a generalization of the
word pixel. For a fluid simulation, the grid to display on the screen is a grid where each cell
contains the density of the fluid at that location in space. This representation can also be
applied to medical data, for example, where each cell would contain a density, the type of
tissue, the amount of blood, etc. Even though volumetric data is very similar to standard
two-dimensional data, it is much more difficult to display due to the fact that they are

generally much larger, and much less adapted to computer display hardware. Most 3D
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rendering techniques concentrate on rendering 2D polygons in 3D space [BBO1][WV91]
[CKH*99][OPL*01][LC87]. Volumetric data generates a large number of 3D voxels which
need to be rendered on the screen. We are faced with a choice of using the graphics card to
display data to which it is not very well adapted, or using the CPU to execute a more
appropriate algorithm.

There are two principal techniques that are used for volumetric rendering, with some
variants. One technique is a Raytracing algorithm which simulates the physics of light
within the volumetric data, and the other technique consists of searching for surfaces within
the data, which gives two-dimensional objects that the computer can display using
traditional 3D rendering techniques. The following sub-sections explain these concepts in

addition to other approaches such as shear-warp rendering and off-line rendering.

2.2.1 Raytracing

The physics of light suggests the simulation of light rays to produce the final image.
In the real world, light passes within an object and then enters the eye or camera. In a virtual
world the same principle is used, but only light rays that actually touch the camera are
examined. This is done by tracing the rays in the opposite direction, from the camera to the
object. A virtual screen is placed in front of the volumetric data, and rays of light are cast
from the camera towards the virtual screen, and from there into the data. Samples are taken
as the ray traverses the data, which allows for the calculation of the final color at that
location on the virtual screen. This technique is used to draw fog in games, and for medical
data [CKH*99] [BB01] [EYS*94]. The main idea taken from this approach is that cells that

are further away from the camera should be rendered first on the screen. For instance, if
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alpha-blending is enabled, the color of an incoming cell will blend with the color of existing
cells that are behind it. This will be further explained in Chapter 4. This method includes
some variants, mainly voxel rendering, splatting, shear-warp rendering and slices in 3D

textures.

2.2.1.1 Voxel Rendering

This technique consists of drawing each point of data in the 3D cube directly on the
screen by using one or several polygons or points in 3D space. As shown in Figure 12, a
way to implement this is to draw the voxels directly on the screen with a simple 2D square.
For each voxel in the cube, the computer draws a square in the same position, facing
towards the camera, and with the appropriate color. Often, the data to be displayed is very
sparse, where most voxels are empty. For this type of data, the algorithm can be optimized
not to draw the squares which correspond to a voxel whose value is less than a certain
threshold. This technique 1s very easy to implement and reasonably fast for small quantities
of data, or very sparse data sets, but it can become extremely slow. This variant is actually a
mathematical simplification of the Raytracing technique, although its implementation is
completely different and much less complicated than a true Raytracing algorithm.

A team at Mitsubishi [OPL*(01] developed architecture for a graphics card which can
render relatively large quantities of volumetric data with low-cost hardware. This
architecture uses a data storage layout which allows a large number of graphics processors
to simultaneously render different pieces of the same data. This allows for a high degree of
parallelism and therefore high-speed rendering, up to 30 frames per second for a 2563 cube.

Mitsubishi’s architecture is based on the voxel rendering technique [OPL*01]. However, we
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are more interested in a technique that can perform well on a single computer without

parallel processing.

Figure 12: Voxels are drawn directly on the screen

2.2.1.2 Splatting

Ray casting works from the image space to the object space (volume dataset), thus it
is called a backward projection method. Another way of achieving volume rendering is to
try to reconstruct the image from the object space to the image space, by computing for
every element in the dataset its contribution to the image. Several such techniques have been
developed [DCH88][WG91][WES91]. In splatting, the final image is generated by
computing for each voxel in the volume dataset its contribution to the final image. The

79t

algorithm works by virtually “throwing™ the voxels onto the image plane. In this process
every voxel in the object space leaves a footprint in the image space that will represent the
object. The computation is processed by virtually “peeling” the object space in slices, and by
accumulating the result in the image plane.

Formally the process consists of reconstructing the signal that represents the original

object, sampling it and computing the image from the re-sampled signal. This reconstruction

is done in steps, one voxel at a time. For each voxel, the algorithm calculates its contribution
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to the final image, its footprint, and then it accumulates that footprint in the image plane
buffer. The computation can take place in back-to-front or front-to-back order. The footprint
is in fact the reconstruction kernel and its computation is the key to the accuracy of the
algorithm. Westover [WES91] proves that the footprint does not depend on the spatial
position of voxel itself, thus he is able to use a lookup table to approximate the footprint.
During computation, the algorithm needs to multiply the footprint with the color of the

voxel. However, this technique can become slow depending on the quantity of data.

2.2.1.3 Shear-Warp Rendering

A new approach to volume rendering was popularized by Philippe Lacroute and
Marc Levoy, and described in the paper "Fast Volume Rendering Using a Shear-Warp
Factorization of the Viewing Transformation" [LL94]. In this technique, the viewing
transformation is transformed such that the nearest face of the volume becomes axis aligned
with an off-screen image buffer with a fixed scale of voxels to pixels. The volume is then
rendered into this buffer using the far more favorable memory alignment and fixed scaling
and blending factors. Once all slices of the volume have been rendered, the buffer is then
warped into the desired orientation and scaled in the displayed image.

An overhead is expected due to the storing of multiple copies of the volume for the
ability to have near axis aligned volumes. This technique is relatively fast at the expense of
less accurate sampling and potentially worse image quality compared to other ray casting

variants.
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2.2.1.4 Slices in 3D Textures

It is possible to accelerate volumetric rendering by using graphic cards that have
support for 3D textures. The volumetric data is loaded onto the video card as a 3D texture.
The cube to display is cut into slices which are positioned to face the camera, as shown in
Figure 13. Each slice shows a piece of the 3D cube. When the slices are drawn in a back-to-
front order, the user sees the cube displayed on his screen. By varying the number of slices,
it is possible to change the level of detail in order to have more detailed images, or a more
fluid display. This technique takes advantage of the graphics hardware and therefore can be
much faster than the direct voxel technique. However, it is also limited by the abilities of the
graphics hardware. Like the voxels technique, this technique is a mathematical
simplification of Raytracing, but with an extremely different implementation. This technique
uses a dedicated graphics card which is present in most modern computers, which allows the
main processor to be used for other tasks while the graphics card performs the rendering
[FRA95].

However, this method requires the volumetric data to be loaded into the graphics
card’s memory, which is generally significantly smaller than the computer’s main memory.
For dynamic data, which is our case, this fact means that the computer is forced to reload the
data onto the graphics card after each change in the data (timestep). Since the bandwidth to
the graphics card is relatively small compared to the bandwidth to main memory, this can
create a bottleneck for data updates. In addition, simulations often produce data in a format
which is not directly supported by the graphics card, requiring an expensive conversion for

every timestep update.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 13: Volumetric rendering using 3D textured slices

2.2.2 Surface Reconstruction Techniques

The other principal technique is surface reconstruction. We define regions inside the
volumetric cube, and the computer searches for surfaces between the regions. For example,
if the cube contains a sphere with cell values of 1 on the interior and 0 on the exterior, the
two regions could be defined as value < 1 and value >= 1.

The surface reconstruction algorithm would then construct the surface of the sphere
using the values present in the cube. A fluid simulation could define a region where the
density is greater than a certain value, and this technique would then search for iso-surfaces
where the density is equal to this value. Medical data would define regions such as the brain,
the skull, arteries, etc., and search for the surfaces between them. After defining the regions,
the surface reconstruction algorithm analyzes the data and creates the surfaces. The standard
surface reconstruction algorithm i1s Marching Cubes [LC87]. This algorithm examines the
data in groups of eight, with each group forming a small cube. For each corner of the cube,
the algorithm decides whether it is on the inside or the outside by using the provided region

definitions. Taking into account all possible rotations and reflections, there are only fifteen
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possible combinations, each one with a unique set of polygons which the algorithm adds to
the surface under construction. Muller et al. [MCGO3] show a swirl in a glass induced by a
rotational force field. Part (a) of Figure 14 shows the particles and part (c) shows the iso-

surface triangulated via marching cubes.

(a) (b)
Figure 14: (a) Glass particle swirl. (b) Iso-surface created via marching cubes. [MCGO03]
Surface reconstruction techniques are fairly slow, and in general too slow to be used
in real-time. For static data, the algorithm only has to be applied one time and the
algorithm’s speed is not a large problem. Once the algorithm has been applied, the computer

works directly with the resulting 2D surfaces [LC87].

2.2.3 Off-line Rendering Tools

A simulation engine may also be ported to high-end 3D animation tools in the form of
plug-ins. These software tools offer high quality fluid rendering modules to process off-line
data. Some popular software packages include among others:

* Maya Unlimited: The Maya Fluid tool is a computational fluid dynamics toolset that

brings a huge range of atmospheric, pyrotechnic, viscous liquid, and open water

effects to Maya.
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* Blender: It is a free, open-source, 3D studio for animation, modeling, rendering, and
texturing offering a feature set comparable to high end and mid range 3D animation
suites. It is developed under the GPL and runs on many platforms including
Windows, OS X, Linux, BSD, Sun, and Irix as well as some handheld PC platforms.

* Houdini 9: Its solver lets users simulate liquids, gas and sand. The integration
between a fluid simulation with other solvers such as the Rigid Body solver is
possible. There is also a fluid solver available for Houdini’s particle operators

(POPs) to help add fluid-type motion to particle simulations.

However, for our implementation, we are interested in methods that allow the rendering of

fluids in real-time.

2.2.4 Discussion on Fluid Rendering Approaches

Although the set of particles animated by a typical simulation technique move, as a
whole, like a fluid, it often does not look like a fluid if rendered directly. Typically, the
number of particles in a set is too small to give the appearance of a continuous surface of a
fluid. From previous sections we have seen that some techniques could render particles as
metaballs. However, they give the surface of the fluid a lumpy appearance, similar to rice
pudding, which is unacceptable for representing fluids such as water. Another rendering
technique creates an isosurface from the set of particles. The isosurface creates a smooth,
spatially-continuous fluid surface; however, this surface is temporally discontinuous due to
frame-to-frame noise. As a result, the motion of the isosurface appears jerky and

discontinuous.
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Another discussed technique creates a level set representing the fluid surface from
the set of particles. The values of the level set are adjusted for each frame of animation from
the velocities of the set of particles, resulting in a fluid surface that is spatially continuous.
However, the resulting fluid appears sterile and artificial. Increasing the number of particles
in the fluid simulation may allow for a more realistic rendering; however, this greatly
increases the computational burden of the simulation. Additionally, level sets would only
render the surface of the fluid but would not tackle the problem of volume rendering a three-
dimensional fluid below the surface. Raytracing variants are reasonably fast for sparse data
sets in volume rendering, but may become extremely slow when dealing with a large
quantity of data.

It is therefore desirable to have a system and method for rendering a three-
dimensional fluid without overtaking the computational burden of the fluid simulation.
Chapter 4 explains in further detail our implemented rendering approach in which we use
three-dimensional textures to represent the state of the fluid and then bind those textures to
camera-aligned alpha-blended slices. The following section presents previous work in

Haptics along with a discussion on haptic rendering approaches.
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2.3 Haptic Rendering

Haptics is an area which is receiving increasing attention in research. Much of the
work has been done to create perceptually plausible and distinct haptic models which mimic
the physical properties of solid objects, or objects that have shape. Much less research has
tackled the modeling and rendering of shapeless objects such as fluids; and therefore, this is
something we try to address in this thesis.

Physical modeling in haptic refers to the techniques used to haptically represent an
object, how tactile and kinesthetic cues are displayed to the user. This is partially dependent
on what kind of application is intended. The algorithms used to model and synthesize haptic
cues are collectively called haptic rendering. Similarly to how graphic rendering is used to
display visual aspects of a computer generated object or environment, haptic rendering
displays aspects which are touch-based. Many phenomena, physical or otherwise, may be
rendered using haptic displays. For example, users of the technology may use force-
feedback to explore the shape of an object in a 3D virtual environment; a graphical user
interface (GUI) application may use haptic cues to purvey information about interaction
with on-screen components, such as when a button is pushed or a radio box is checked; or
the sensation felt as a needle punctures skin may be simulated by a medical application.
Rendering of these phenomena is often done based on models which represent physical
attributes of objects in the application environment, and several notable attributes are
stiffness, damping, and roughness.

Stiffness defines the elastic resistance of an object to deformation by some force,

modeled as being proportional to a displacement value(e.g., f = -k ¥) . This property is
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often used to control how hard or soft an object feels, and stiffness coefficients are common
among many haptic rendering algorithms.

Damping controls the rate of deformation due to some force and is often modeled as

being proportional to velocity (e.g., f = -k,v). This property is related to the viscosity felt
due to interaction with an object or environment.

Roughness is a measure of the small-scale variations in a surface and is related to
friction and texture. Unlike stiffness and damping, roughness is a property valid only at the
surface of an object. Assigning values to these and other characteristics can sometimes be
done trivially or through artistic efforts. However, it often requires careful inspection of the
real-world object being rendered. Estimation of physical properties based on real-world
interaction behavior can be difficult and cumbersome.

For the class of haptic devices supported by the OpenHaptics toolkit [SENSABLE],
forces are typically used to either resist or assist motion (i.e. force feedback). There are a
variety of ways to compute the forces that are displayed by the haptic device. Some of the
most interesting force interactions come from considering the position of the device end-
effector (the end of the kinematic chain of the device you hold in your hand) and its
relationship to objects in a virtual environment. When zero force is being rendered the
motion of the device end-effector should feel relatively free and weightless. As the user
moves the device’s end-effector around the virtual environment, the haptics rendering loop
commands forces at a very high rate (1000 times per second is a typical value) that impedes
the end-effector from penetrating surfaces [BAS07]. This allows the user to effectively feel

the shape of objects in a virtual environment.
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Haptic rendering algorithms for force-based displays are variations on a common
theme. Quite often, a penalty-based approach is taken to render haptic models
[SB97][BASO07]. At a basic level, a haptic device generates force-feedback based on the
position of the probe’s end-effector and the Haptic Interface Point (HIP). The difference
between the HIP and the end-effector simply refers to the level of abstraction that they
represent. The end-effector is the virtual proxy of the system, while the HIP is the tip of the
haptic probe. These two positions are initially the same, but as the player manipulates the
haptic device, the HIP might traverse a collision surface. A force is then rendered at the
haptic device which is directly proportional to the vector (times the stiffness scalar) between
the device’s end-effector and the position of the HIP. In Figure 15, the HIP’s position has
penetrated a static obstacle (e.g. the baton has touched a wall of the bowl). Since the end-
effector cannot move to the HIP’s position, a spring force is displayed at the haptic device

and the users can feel a collision response.

Figure 15: Penalty-based haptic rendering.

The way in which forces are computed can vary to produce different effects. For

example, the forces can make an object surface feel hard, soft, rough, slick, sticky, etc.
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Furthermore, the forces generated by the haptics rendering can be used to produce an
ambient effect. For instance, inertia, and viscosity are common ways to modify the
otherwise free space motion of the user in the environment. Another common use of forces
in a virtual environment is to provide guidance by constraining the user’s motion while the
user is selecting an object or performing a manipulation. Further background on haptic
rendering and haptics in general can be found in some additional articles
[HBS99][MRF*96]. The following sub-sections present a categorization of haptic devices,
previous work on rigid body and elastic contacts, volumetric bodies, and a discussion on

haptic rendering approaches.

2.3.1 Devices

Haptic devices have varying complexities, and can move in different ways. Force
feedback devices are sometimes described by their Degrees of Freedom (DOF). A Degree of
Freedom refers to a direction of movement. Common Degrees of Freedom include right-left
movement (X), up-down movement (Y), forwards-backwards movement (Z), roll (rotation
about the Z axis), pitch (rotation about the X axis), and yaw (rotation about the Y axis).
Degrees of Freedom can refer both to how a device keeps track of poSition, and how a
device outputs forces. A mouse, for example, is a 2 DOF input device — it keeps track of
position in the right-left, and the forward-backward. A joystick is also a 2 DOF device, but
its Degrees of Freedom are different (it rotates forwards-backward, and right-left). A force
feedback joystick is a 2 DOF device with force feedback. It both tracks 2 DOF and gives
simple forces in 2 DOF. The following list presents different approaches available to

achieve various forms of haptic information.
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* Exoskeletons and Stationary Devices: The term exoskeleton refers to the hard
outer shell that exists on many insects and other creatures. In a technical sense the word
refers to a system that covers the user or that the user has to wear. Current haptic devices
that are classified as exoskeletons are large and immobile systems that the user must attach
himself or herself to, as shown on Figure 16 (Left). The benefit of exoskeleton devices is
that their large size and immobile nature allow for the generation of large and varied force
information without strict size or weight constraints. Their main disadvantages are large
size, heavy weight, and high cost. Also the calibration to adapt to different sized users is an

issue.

Figure 16: Left: Exoskeleton device [VRAC]. Right: CyberGlove [IMMERSION]

* Gloves and Wearable devices: These devices are smaller exoskeleton-like devices
that often, but not always, take the form of a glove (Figure 16 Right). One major benefit of a
wearable system is that the user can move more naturally without being weighed down by a
large exoskeleton or other immobile device. The drawback of the wearable systems is that
since weight and size of the devices are still a concern the systems will have a more limited
set of capabilities. Also the calibration to adapt to different sized users is an issue.

¢ Point-sources and Specific Task Devices: This is a class of devices that are very

specialized in either their technology or their application. Devices that provide any type of

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



force information that may be required can be complicated and even extremely difficult to
develop. Designing a device to perform a single type of task restricts the application of that
device to a much smaller number of functions. However, it allows the designer to focus the
device to perform its task extremely well. These specific task devices have two general
forms - single point of interface devices and specific task devices.

An example of a single point of interface device is the Phantom from Sensable
Technologies™. The Phantom has either a handle or a fingertip interface with an armature
that provides up to six degrees of freedom, to a single point. The Phantom family of devices
are all 6-DOF input, based on an articulated armature design. The Desktop and Omni
(Figure 17 Right) models provide 3-DOF force feedback, while the Premium-A model is
capable of full 6-DOF haptic feedback (force and torque). The novel Novint Falcon provides
3-DOF Input/Output at an affordable price (Figure 17 Left).

Our research focuses primarily on models which are suitable for stylus-based haptic
interfaces (e.g., [SENSABLE]). So in our system, the user interacts with the environment
using an Omni Phantom device although display on other devices, such as Cyber-Gloves,
may be possible by sending appropriate forces to each output sensor (e.g., [PH03]). We
leave it up to the application developer to ensure that any vibrotactile and force cues

rendered by fluid interaction are compatible with the limits of the haptic device.
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Figure 17: Left: The Novint Falcon [NOVINT]. Right: The Sensable Phantom Omni [SENSABLE].

* Locomotive Interfaces: Locomotion interfaces are movement of force restriction
devices that, in a confined space, simulate unrestrained human mobility such as walking and
running for virtual reality (Figure 18). Locomotion interfaces overcome limitations of using
Joysticks for maneuvering or whole-body motion platforms, in which the user is seated and
does not expend energy, and of room environments, where only short distances can be

traversed.

Figure 18: Treadport, Sarcos Inc. [SARCOS].

¢ YVibrotactile Feedback devices: These are vibrating gamepads and force-feedback

joysticks which offer limited interactivity and display simple haptic effects to the user
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(Figure 19 Left). For example, open-loop vibrotactile feedback and predefined force
feedback signals. These devices complement other peripherals such as keyboards, mice, or

trackers to enhance the user’s interaction experience.

Figure 19: Left: Sidewinder Force feedback Joystick, Microsoft [MICROSOFT]. Right: Tactile Display
[TFCO07]

* Tactile displays: These devices stimulate the skin to generate the sensations of
contact (Figure 19 Right). The skin responds to several types of physical sensations; such as
vibrations, small-scale shape or pressure distribution, and temperature sensations. Tactile
feedback can also be used to produce a symbol, like Braille, or simply a sensation that

indicates some condition or surface texture.

2.3.2 Haptic Forces and Textures

Much effort has been applied to the problem of haptic display of rigid body contact
as well as compliant elastic contact. Some progress has also been made in haptic rendering
of textured surfaces [OJS*04] [SP96]. However, haptic simulation of the interaction of

shapeless volumetric objects such as fluids is still a very novel field of research.
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Rigid Body and Elastic Contacts

Some research in this field has been applied in the context of tissue modeling for
surgical simulation [ADO03]. Several techniques have been proposed for integrating force
feedback with real-time virtual environments to enhance the user’s ability to perform
interaction tasks [CB94][MS94][SBM95]. Ruspini et al. [RKK97] presented a haptic
interface library “HL” that uses a virtual proxy and a multi-level control system to
effectively display forces using 3-DOF haptic devices. Hollerbach et al. [HCT*97]
[NNH*98] described a haptic display system for contact and manipulation in the CAD
design of mechanical assemblies, and Thompson et al. [TJC97] have presented a system for
direct haptic rendering of sculptured models.

Durbeck et al. [DMW*98] have described a system for enhancing scientific
visualization of vector fields with haptic feedback. The force is computed by using a point-
probe model and a simple vector-to-force magnitude mapping function. Unlike our method,
it does not compute actual aerodynamic or hydrodynamic forces, it does not support
volumetric probes, and the forces were not physically-based. More recently, Lawrence et al.
presented a haptic display technique using a 5-DOF force feedback device for shocks and
vortices in hypersonic CFD datasets [LLP*00].

McNeely et al. [MPT99] presented a method for the haptic rendering of complex
virtual environments by voxelizing objects. Otaduy and Lin [OLO3] presented a
simplification algorithm for faster collision queries with sufficient accuracy for the haptic
rendering. These methods realize realistic haptic interactions with virtual worlds. However,

they cannot handle forces by objects interacting with fluids.
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Volumetric Bodies

Gibson [GIB9S5] proposed an algorithm for object manipulation including haptic
interaction with volumetric objects and physically-realistic modeling of object interactions.
The algorithms presented by Avila and Sobierajski [AS96] rely on interactive force
feedback and rendering to allow a user to quickly explore and modify volumetric scenes.
Essentially, most present techniques for direct haptic rendering of volumetric data follow a
general method, where the force display is defined as a vector valued function, or is
transformed to one [AS96][GIB95][IN93]. From this function, force feedback is generated

by the data around the probe and from the velocity of the tip.

2.3.3 Discussion on Haptic Rendering Approaches

The amount of literature regarding haptic technology and rendering has increased
substantially in recent years. In the context of gaming, experimental haptic games such as
HaptiCast [AML*96] — our system - , and Haptic Battle Pong [MNSO04] have been
generating brainstorming ideas for assessing haptic effects in game design. Nilsson and
Aamisepp [NA03] explain the relevance of incorporating haptics in a 3D game engine and a
plug-in for Crystal Space [CRYSTAL] was developed to demonstrate this integration
successfully. However, haptic interaction in the context of 3D gaming was not well explored
by their project, nor it addressed any fluid haptic feedback.

Other efforts [CBM*05] to combine haptic and graphical rendering are ambitious,
but they are just concerned with the introduction of a general haptic library without targeting

specific feedback needed for fluids. Dachille et al. [DQKO1] present interesting haptic
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sculpting tools to expedite the deformation of B-Spline surfaces with haptic feedback and
constraints, but they also do not explore any feedback integration with fluid simulations.

Foster and Metaxas [FM96] used a form of the hydrostatic force equations to create
only visual animations of rigid body objects in their offline Navier-Stokes simulation.
Hydrostatics ignores the dynamic effects of fluid flow on the objects. Their simulation also
did not account for the effect of the objects on the fluid.

Tu [TU96] computed forces by using a boundary integral of the relative velocity
between a fish’s fin surface and surrounding fluid for simulating how swimming motions
propel a fish. Like [FM96] this method apparently does not take the influence of the
immersed surface on the fluid, since at the actual surface of an immersed object, the physical
boundary conditions demand that the velocity of the fluid relative to the surface is always
zero, which would mean the force should always be zero as well with this method.

Gosline et al. [GSY04] used Finite Element methods to simulate fluid pockets
enclosed in an elastic body. However, they focus on the relation between the volume and
pressure of a fluid cavity using a specially designed haptic device and the simulation is
limited to 2D. Ristow [RIS99] [RIS00] has created a number of graphical offline simulations
of spherical and elliptical particles falling through fluids using accurate force computations
based on the fluid stress tensor. However, forces were not targeted to a real-time haptic
application. Our proposed method uses a different numerical procedure to compute the
force. A distinction is that our “particle” is an actively controlled haptic probe rather than a
passively simulated object. In contrast to these methods, we use a real-time fluid simulation
to generate the force feedback to drive a haptic display, allowing the user to both feel and

influence the fluid at the same time.
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2.4 Haptic-Fluid Integration

There are two interesting related projects that address the integration of haptics and
fluids [DSH*06] [BL04]. However, they employ different application-dependent
approaches that do not target the problem we are trying to solve. We present them in more

detail in the following subsections.

2.4.1 A Fluid Resistance Map Method

Dobashi and his team [DSH*06] created a model that approximates real-world forces
acting on a fishing rod or kayak paddle by doing part of the math in advance of the
simulation: the forces associated with different water velocities and different positions for
the paddle or fishing lure were pre-calculated and saved in the database. In addition, their

simulation is based on a much larger setup, including two projection screens and large haptic

equipment (see Figure 20).

™, Projector

o

Side view

Figure 20: Dobashi's et al. large simulation setup [DSH*06].

In contrast to this, our intention is to enable the rendering of real-time fluid
calculations on a personal computer or a laptop with a low-end desktop haptic device. To

cope with these resource limitations, we take a different approach in simulating real-time 3D
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fluids by using a grid-based numerical method free from timestep restrictions and rendering
real-time forces based on the density and velocity fields of the simulation. Section 4.2

presents a table that summarizes the differences between our approaches.

2.4.2 Physically-Based Model for Interactive Digital Painting

Baxter and Lin [BL04] demonstrated a method for integrating force feedback with
interactive fluid simulations. They succeeded in a real-time haptic display of fluids in two
dimensions by directly solving Navier-Stokes equations. Similarly to us, they calculate the
feedback forces due to fluids based on physical phenomenon; however, they did not explore
volumetric interactions in three-dimensions and therefore ignored 3D related issues such as
volume rendering and haptic interaction in a volumetric space. In addition, an object
controlled by the user is discretized by using grids. The discretized shape changes from
frame to frame when the object moves. This causes undesirable noise in the resulting force.

They adapt their fluid-haptic feedback method for use in a painting application that
enables artists to feel the viscosity of the paint as they make brush strokes using the haptic
stylus on a flat surface (see Figure 21). However, their application is a mere translation of a
two-dimensional plane in a three-dimensional space, which does not reflect a real-time
volumetric interaction with a fluid in motion. In this thesis, we focus on the force feedback

that results from the interaction with a pool of moving fluid.
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Figure 21: Screen capture of Baxter and Lin painting application [BL04].

In contrast to their approach, we explore haptic ambient forces to represent
differences in fluid densities. An ambient force is a global strength effect that surrounds the
haptic probe, regardless of collision with any surface. In addition, we adapt our method to be
integrated with a spring-net deformable surface. As the fluid surface has a stronger tension
than the inner fluid, this spring-net surface permits the calculation of force feedback
generated by surface tension, enabling users to feel the surface waves and ripples in a 3D
perspective. The intended result is to generate a fluid-like haptic effect. When users touch
the fluid surface through the haptic interface, they can perceive the resulting surface
deformations. When they stir the fluid, they can see changes in the fluid’s density and
velocity and simultaneously feel the resulting force in real-time. The force felt depends on
the velocity, direction, density and viscosity properties. Section 4.2 presents a table that
summarizes the differences between our approaches.

The next chapter presents the fluid processing stage of the system, which includes
the solution of the flow equations, a description of the surface deformation process and the

integration between graphics and haptics workspaces.
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Chapter 3 Fluid Flow Processing Stage

In this research, we would like to achieve a stable three-dimensional fluid simulation
algorithm, so that we can get enough information to later render them to the user,
graphically and haptically. The simulation should also account for input from the haptic
device and run in real-time. In this chapter we present the fluid flow processing stage of the
system, which includes the solution of the flow equations, the extension of the simulation to
three dimensions, the simulation of multiple substances, a description of the surface

deformation process, and the integration between graphics and haptics workspaces.

3.1 Real-time Fluid Simulation

In order to make a simulation algorithm suitable for real-time interactive
applications, it needs to have certain characteristics:

* Inexpensive computations: the application must run at a constant rate of 30 — 60
frames per second. From the total time available for a single frame, the physically-
based simulation only gets a fraction besides other tasks such as graphic and haptic
rendering. Hence, low computational complexity remains one of the most important
constraints.

* Low memory consumption: while in off-line computations, people simply buy as
much memory as they need to simulate the desired effect, the memory on a single PC
is limited and needs to be shared among different tasks very similar to the
computation time. Therefore memory efficiency of the method also needs to get

special attention.
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* Stability: In off-line simulations adaptive time-stepping can be used in situations

where stability problems arise. In contrast, a real-time application runs at a fixed
frame rate. The simulation method must, therefore, be stable for the given time step
size no matter what happens. External forces and the movement of boundaries can
get almost a;bitraﬁly high. A real-time simulation method needs to be able to cope
with all those situations and must remain stable under all circumstances.

* Plausibility: Of course it is not possible to reduce the computational and spatial
complexity so drastically and increase the stability so significantly without some
trade off with the quality of the result. Therefore, what we require from a real-time
simulation method is visual plausibility, not necessarily scenes that are

undistinguishable from the real world.

Jos Stam [STA99] [STAO03] proposed a two-dimensional fluid simulation based on
real fluid physics, but whose speed is adequate for simulation on a standard PC. Our
approach departs from Jos Stam's previous work and from Fedkiw’s et al. [FSJO1] but we
further extend the simulation to three-dimensions in order to take advantage of the open
haptic workspace. For the sake of clarity we will start to describe a fluid living in two
dimensions. The extension to three dimensions is described in the following section. We
model density as a set of particles (centers of grid cells) that move through a velocity field
using Eulerian Grid-based approach. The fundamentals of this equation were explained in

chapter 2 and we now proceed to explain its solution.
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Jos Stam’s main contribution was to propose an unconditionally-stable, semi-implicit
advection scheme for the real-time solution of the Navier-Stokes equation. Our contribution
is not the solution of the Navier-Stokes equation itself, but how Stam’s approach can be

expanded to couple a 3D fluid flow with a deformable surface and haptic interaction in real-

time.

3.1.1 Solving the Equations

Analytical solutions of the Navier-Stokes equations can only be found for a few
simple physical problems. Nevertheless, it is possible to use numerical integration
techniques to solve them incrementally. The aim of this project is to display the evolution of
the flow over time, so an incremental numerical solution is sufficient.

The first step in the algorithm is to transform the Navier-Stokes equations into a
simplified form that one can use in a numerical solution [STA99]. Recall from section
2.1.1.1 that the four terms on the right-hand side of the Navier-Stokes equation represent
accelerations. The fourth term, pressure, says that the velocity moves along a pressure
gradient. This term will actually disappear because it creates divergence. Divergence means
that the velocity would always flow out of high-pressure cells, which is illegal in our
constant-density universe, so Stam’s simplification [STA99] omits this term in his
presentation.

The following section describes a transformation that leads to a straightforward
algorithm. Very often density is not constant (e.g. in smoke simulations), and we want

density to move around too. Stam [STA99] introduces a density equation that we add to our
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system to simulate density movement, and it looks very much like the velocity equation, as

follows:

~

Velocity Movement: %— =—(@ V)i + W4 + f (11)

Density Movement: %‘-t’- - @ V)p+kVp + S (12)

where u is the vector-valued velocity at a point, 7 is time, v is the kinematic viscosity of the
fluid, f represents the external force, _ represents its density, § represents the external
substance that is being added to the fluid, & represents a constant at which density tends to
diffuse, “-” denotes a dot product between vectors, and “V” denotes the vector of spatial
partial derivatives. The density equation says that (a) density moves along the velocity field,
(b) density tends to diffuse according to some constant &, and (c) the user can add or remove
density S anywhere he/she wants. The two similar representations of Navier-Stokes
equations indicate that both velocity and density fields could be solved in a similar fashion.
For a computer simulation, it is necessary to create a discrete representation of the
fluid. Our simulation places the fluid in a grid where each cell contains a velocity and a

density, as shown in Figure 22.

Figure 22: Organization of a fluid simulation's volumetric data
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Initially, both the velocity and the density are assumed to be constant in each grid
cell and we usually display their values at the cell center. In practice we allocate two arrays
for both the density and the velocity of size, size= (N+2) *(N+2) (In 3D it would be size=
(NX+2)%(NY+2)¥(NZ+2)). We prefer to use single dimensional arrays over double ones for
efficiency purposes in our implementation. The movement of the fluid is determined by
several simulation steps carried out on the velocity and density. First we will show how to
solve the density equation. This will explain the different components of the solver.
Subsequently we will transfer these ideas to the harder problem of simulating velocity fields.

The basic structure of the solver is as follows. We start with some initial state for the
velocity and the density and then update its values according to events happening in the
environment such as the interactions with the haptic device. In the prototype, we let the user
apply forces and add density sources with the haptic probe.

The fluid flow can then be visualized by tracking substance particles which simply
move through the fluid as done by Foster and Metaxas [FM96]. As an example, we
implemented a haptic game where a user uses a haptic probe to stir a pool of fluid in a bowl
and also inject multiple substances into the fluid. The scenario has two components; (i) fluid
animation - a magician mix various substances in the liquid bowl and (ii) haptic motion
recognition (it will be discussed in Chapter 5) - when the substances and the mixing gestures
are correct, the liquid turns to a magic potion with vapor. In our game example, the forces
could come from the movement of the haptic device while preparing a magic potion, while
the density sources could represent the different substantial ingredients that are needed in the

potion recipe.

{4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The simulation is therefore a set of snapshots of the velocity and density grids. We

assume that the time spacing between the snapshots is given by the fixed variable df in the

remainder of this document.

Moving Densities

initial Density Add Forces Diffuse Move

Figure 23: At every time-step we resolve the three terms appearing on the right hand side of the density
equation.

As mentioned above we will first describe the solver for a density field moving
through a fixed velocity field that does not change over time. The density equation states
that the changes in density over a single time step are due to three causes. These causes are
the three terms on the right hand side of the equal sign in the equation. The first term says
that the density should follow the velocity field, the second states that the density may
diffuse at a certain rate and the third term says that the density may increase or decrease
depending on the addition or removal of substances by the user. The solver will resolve
these terms in the reverse order as they appear in the equation as shown in Figure 23. We
start from an initial density and then repeatedly resolve these three terms over each time
step.

The first term is easy to implement. We assume that the sources for a given frame are

provided in an array s//. This array is filled in by some part of the game engine which
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detects sources of density. In our prototype, it is filled with a substance that emerges from

the stirring baton when the user presses a button on the haptic probe, as shown in Figure 25.
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Figure 24: Through diffusion each cell exchanges density with its direct neighbors.
Left: 2D. Right: 3D.

Figure 25: Substance is inserted into the simulation through the tip of the haptic device. Device is moving in
the direction of the arrow introducing a force.

The second step accounts for possible diffusion at a rate diff (given as a parameter),
when diff > 0 the density and the velocity will spread across the grid cells. We first consider

what happens at a single grid cell. In this case we assume that the cell exchanges densities
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only with its four direct neighbors as shown in Figure 24. The cell’s density will decrease by

losing density to its neighbors, but will also increase due to densities flowing in from the

neighbors, which results in a net difference of

dofi-1j]+ dofi+1,j]+ dofi,j-1]+ do [i,j+1]-4* dy [i,j]

where dj is the density value at a specific grid cell. A possible implementation of a diffusion
solver then simply computes these exchanges at every grid cell and adds them to the existing
values. Although the diffusion routine might seem attractive at first, it unfortunately does
not work. For large diffusion rates a the density values start to oscillate, become negative
and finally diverge, making the simulation collapse. This behavior is a general problem that
plagues unstable behavior. For these reasons we consider a stable method for the diffusion
step. The basic idea behind this stable method is to find the densities which when diffused

backward in time yield the densities we started with. In code:

dofij] = difij] - a¥(di[i-1j] +difi+ Lj]+di[ij-1]+difij+1]-4%di[i]);

where dj is the density we started with and d; is the next density value of a grid cell. This is
a linear system for the unknowns d; [, j/. We could build the matrix for this linear system
and then call a standard matrix inversion routine. However, this is overkill for this problem
because the matrix is very sparse: only very few of its elements are non-zero. Consequently
we can use a simpler iterative technique to invert the matrix. The simplest iterative solver
which works well in practice is Gauss-Seidel relaxation [COL00]. This relaxation attempts
to increase the convergence rate by using values computed for the &y, iteration in subsequent

computations within the %y, iteration. The general iteration formula is:
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1 i1 n
xf = a—[bi - 2 a;x% - 2 a,.jxf'lJ (13)
= J=r+1

which assume we compute the x; in natural order (i.e. sequentially). Elimination methods
such as Gaussian elimination are prone to round off errors for a large set of equations.
Iterative methods, such as Gauss-Seidel method, allow the user the control of the round-off
error. Also if the physics of the problem are well known for faster convergence, initial
guesses needed in iterative methods can be made more judiciously. The benefit of this
version of the diffusion solver is that it is almost as simple as the unstable one, but can
handle any values for diff, dt, or N. Regardless of how big these values are the simulation

will not blow up.

Figure 26: The advection step moves the density through a static velocity field. The red short line segments
are the current and the white regions contain high density.

The final step in the density solver forces the density to follow a given velocity field.
Refer to Figure 26. Again we want a technique which is stable and does not blow up.
Similarly to the diffusion step we could set up a linear system and solve it using Gauss-
Seidel relaxation. However, the resulting linear equations would now depend on the
velocity, making it trickier to solve. Fortunately, there is an alternative which is more

effective. The key idea behind this technique is that moving densities would be easy to solve
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if the density were modeled as a set of particles. In this case we would simply have to trace
the particles though the velocity field. For example, we could pretend that each grid cell’s
center is a particle and trace it through the velocity field as shown in Figure 27(b). The
problem is that we then have to convert these particles back to grid values. How to properly
do that is not necessarily obvious. A better method is to find the particles which over a
single time step end up exactly at the grid cell’s centers as shown in Figure 27(c). The
amount of density that these particles carry is simply obtained by linearly interpolating the
density at their starting location with the closest neighbors. This suggests the following
update procedure for the density. Start with two grids: one that contains the density values
from the previous time step and one that will contain the new values. For each grid cell of
the latter we trace the cell’s center position backwards through the velocity field. We then
linearly interpolate from the grid of previous density values and assign this value to the
current grid cell. So, instead of moving the cell centers forward in time (Figure 27(b))
through the velocity field shown in (Figure 27(a)), we look for the particles which end up
exactly at the cell centers by tracing backwards in time from the cell centers (Figure 27(c)).
At time zero, when the system starts, we construct and pass an original vector field to be
used by the system. This initial vector field, which is our base case, consists of zero
component vectors resembling an undisturbed vector field. When the user introduces forces
via the haptic device on a particular grid cell, the read haptic-force values are added into the
appropriate vector components of that cell. The resulting vector field is the one used for the
advection process already explained in this section. These advection steps are grouped

together into an advect() routine.
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Figure 27: Basic idea behind the advection step.
The idea of tracing back and interpolating goes back to the work by Courant et al. [CIR52].
It has since then been rediscovered by many researchers in various fields and is generally
classified under the heading of “Semi-Lagrangian” techniques. The back-tracing method is
the main reason for making the interactive fluid stable and efficient, but it is also the main
reason for causing not high-level accuracy and unrealistic visual effects. However the visual
effects are still quite acceptable for our goals. This completes our description of the density

solver. All of these steps can conveniently be grouped together into a single routine.

Evolving Velocities

Once again consider the Navier-Stokes equations presented earlier. In the light of
what we now know about the density solver we can interpret the velocity equation as saying
that the velocity over a time step changes due to three causes: the addition of forces, viscous
diffusion and self-advection. Self-advection may seem obscure but we can simply interpret it
as the fact that the velocity field is moved along itself. More importantly we can reuse the
routines that we developed for the density solver and apply them to update the velocity field.
In most cases we simply had to duplicate the calls for each component of the velocity field.
There is, however, a routine called project() which forces the velocity to be mass

conserving. This is an important property of real fluids which should be enforced. Visually it
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forces the flow to have many vortices which produce realistic flows. It is therefore an

important part of the solver.

Figure 28: Using Hodge decomposition to obtain an incompressible field [STA01]. Up left most image shows
velocity fields, up-middle image shows tnass conserving fied and the up-right one shows gradient field.

After the steps preceding the project() routine the velocity field seldom conserves mass. The
idea is to make it mass conserving in the last step. To achieve this we use a result from pure
mathematics called the Hodge decomposition: every velocity field is the sum of a mass
conserving field and a gradient field. This result is illustrated in Figure 28 (top). Notice how
the mass conserving field has nice vortices, typically the type of field we would like to have.
On the other hand the gradient field shown in the upper right corner of Figure 28 is the worst
possible case: the flow at some points either points all outward or inward. In fact the
gradient field indicates the direction of steepest descent of some height function. Imagine a
terrain with hills and valleys with an arrow at every point pointing in the direction of
steepest descent. Computing the gradient is then equivalent to computing a height field.
Once we have this height field we can subtract its gradient from our velocity field to get a
mass conserving one as shown in Figure 28 (bottom). We will not go into the mathematical

details, but will simply state that computing the height field involves the solution of some
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linear system called a Poisson equation. This system is sparse and we can re-use the Gauss-
Seidel relaxation routine developed for the density diffusion step to solve it.

We call the project() routine twice in the implementation. We do this because the
advect() routine behaves more accurately when the velocity field is mass conserving. In
conclusion, the project() routine refers to the process of pressure projection, which is not
any kind of geometrical projection, but which represents the routine for finding the best
divergence-free field to match a vector field by subtracting the gradient of pressure, as
previously explained through the Hodge decomposition. A further discussion on pressure

projection can be found in Bridson et al. 2007 [BM07].

Boundary Conditions

Something we have left out up to now is the treatment of the boundary, namely the
purpose of the set_bnd() routine. We assume that the fluid is contained in a box with solid
walls: no flow should exit the walls. This simply means that the horizontal component of the
velocity should be zero on the vertical walls, while the vertical component of the velocity
should be zero on the horizontal walls. For the density and other fields considered in the
code we simply assume continuity.

Other boundary conditions are of course possible. For example, we could assume
that the fluid wraps around itself: a flow that exits one wall simply reenters the opposite one.
Another possibility is to have a fixed velocity on some parts of the boundary to simulate an
inflow like that found in a wind tunnel. A simple way of implementing internal boundaries
is to allocate a Boolean grid which indicates which cells are occupied by an object or not.
Then we simply have to add some code to the set_bnd() routine to fill in values for the

occupied cells from the values of their direct neighbors. This simple procedure will work if
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an object is at least two grid cells thick, since otherwise some values might leak through the
boundary. However, we believe that it is not worth the additional effort, since the visual
improvement is minor.

The current solver suffers from what is called “numerical dissipation”: the fluids
dampen faster than they should in reality. This is in essence what makes the algorithms
stable. Recently Fedkiw et al. [FSJ01] proposed a technique called “vorticity confinement”
which re-injects the lost energy due to dissipation back into the fluid, through a force which
encourages the flow to exhibit small scale vorticity. This technique works well for the

simulation of smoke for example.

3.1.2 Simulation Extension to 3D

The most important quantity to represent in a fluid simulation is the velocity of the
fluid, because velocity determines how the fluid moves itself and the things that are in it. In
the context of this thesis, we define the velocity vector field of a fluid on a three-
dimensional Cartesian grid such that for every discrete position ¥ = (x, y,z), there is an
associated velocity at time t, #(X,7) = (u(X,1), W(X,7),w(%,?)) . The key to fluid simulation is
to take steps in time, and at each time step, correctly determine the current velocity field.
This is done by solving the Navier-Stokes equations for incompressible flow as explained
previously. Once velocity field is acquired, one can use it to move objects, smoke, cloud
water concentrations, and other quantities that can be displayed in applications.

The explained simulation algorithm was presented as a two-dimensional simulation,
but all of the techniques can be applied to a three-dimensional simulation. In terms of

implementation, some functions need to be extended as follows:
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* Itisnecessary to add a third term in every function that manipulates the 3D grid.

'A We need to change all the loops and data structures to accommodate the third
dimension within the simulation. This means that call frequencies change from 2/2 =
4 in 2D to 2”3 = 8 calls in 3D.

* Interpolation is changed to a trilinear interpolation.

* The number of cell’s neighbours increase from 4 to 6, as shown in Figure 24.

* The cell’s density will decrease by losing density to its neighbors, but will also
increase due to densities flowing in from the neighbors, which results in a net
difference of:

dy [ij.k] = (difij k] + a*(d, [i-1j,k]+ d; [i+1,j.k]+ d; [i,j-1,k]+
dy [ij+Lk]+ d; [ijk-1]+ d; [i,j.k+1])/(1+6%a);
where dj is the density we started with, d; is the next density value of a grid cell,
a=dt*diff *N*N*N, and N is the number of grid cells.

* The set boundaries routine, set_bnd(), needs to further check for a velocity
component of zero on the walls of the new axis.

A two-dimensional simulation produces data which can be easily transformed into
pixels that are then displayed directly on the screen. However, a three-dimensional
simulation creates volumetric data which is difficult to display. Displaying these results

requires volumetric rendering techniques. Chapter 4 will explore this issue in more detail.

3.1.3 User Interaction and External Forces

Forces will set the fluid into motion while substances will inject densities into the

environment. The Sensable Omni [SENSABLE] provides a robust API that allows the
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programmer to read input parameters of the haptic device, such as velocity and position of
the probe. Therefore, we can read the velocity vector that describes the probe motion and
use that information to inject a force into the simulation. We use the applied force values to
update the simulation of both the inner fluid and its surface in the following manner.

A grid cell has array information about velocity u/7 v/] w/] and also density df]. For
example, Figure 29 shows a force being applied at grid cell xyz /3, 2, 1 0] in the direction of
the velocity vector uwvw(0.2, 0.8, 0.5). To integrate this into the solver, we go through the

following steps which account for the force term of equation 3:

1. Calculate the 3D grid-cell in which the HIP

is positioned, using the hapto-visual .
mapping function explained in section 3.3. Figure 29: Force added by the device.
2. Read the velocity vector of the device.
3. Insert force constant at the grid-cell in the direction of the velocity vector (a
value for each velocity component in X, y, z). For instance:
u[5,2,10] = force*0.2;
v{5,2,10] = force*0.8;
w[5,2,10] = force*0.5;
where force can be one(1) or a scaled value imposed by the programmer. The

solver uses this updated array of values for the computation of the next time-step.

4. The solver finds the subsequent timestep of this force insertion.
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At the surface, force is used to deform the mass-spring system. In F igure 35 we can see that
the force is proportional to distance ¥, times the stiffness scalar k. When the probe touches
the surface, we find the closest mass-spring particle and add the force to that particle,
generating a new ordinary differential equation which is solved by the RK4 method

explained in section 3.2.1.

The input force is the distance ¥ between the device’s end-effector and the position of the
HIP. Stiffness k is given by the elasticity of the surface (k=0 is a full elastic surface, while
k=1 is a rigid non-elastic surface). Other mass-spring particle system parameters are:
gravity, drag, spring-stiffness and damping-constant. However, spring-stiffness £ is the one
used to calculate haptic force value as shown in the figure. The other parameters are used to

simulate the graphic deformation of the system and how quickly it can restore itself.

Figure 30: Output force f with respect to input force (distance y), in terms of surface stiffness k.
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Figure 30 shows the amount of force feedback felt, £, with respect to the distance, y, between
the device’s end-effector and the position of the HIP. The stiffness parameter, k, is presented
at different values to show how it affects the force felt. A surface with high elasticity (low &
values) is able to easily deform resulting in low y and f'values. On the other hand, a more
rigid surface can produce higher force feedback as it is less likely to deform resulting in

large y distance values.

3.1.4 Fluid Simulation of Multiple Substances

A substance represents an entity with given properties (e.g. density, color, viscosity)
that enters the base fluid simulation. Our system allows for the combination of multiple
substances on top of the base fluid. Therefore, different calculation grids are maintained for
each substance, as each of them have their own characteristics and colors. The resulting
rendered force is a weighted combination of each substance’s grid involved in the mix.
Figure 31 shows a screenshot of an initial red substance which is later mixed with a denser
green substance. The result is a yellowish blend which combines the contributed haptic

properties of both sources.
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Figure 31: Simulation of multiple substances. A red and a green substance are added into the
simulation (t1-t2). The user stirs with the haptic device until they mix together in the fluid (t3-t6).

This feature allows the user to perceive the dynamics of mixing substances with
different properties into one simulation. The haptic rendering effect at a particular
coordinate in space results from adding properties of each substance at that particular

location.

3.2 Surface Deformation

There are two main reasons to overlay a surface on top of the 3D fluid:
(i) Graphical rendering purposes: one thing that should be noted is that although particles are
more accurately moved through space, they alone could not be used to represent a dynamic
surface such as water. The problem is that as the simulation is updated, the distribution of

particles can become very uneven, resulting in unresolved areas where there simply aren't

AR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



enough particles to properly represent a surface. The second problem inherent in a particle
only method is that a surface still needs to be defined and doing so based on particles is non
trivial.
(i) Haptic force-feedback purposes: As the fluid surface has a stronger tension than the
inner fluid, this spring-net surface permits the calculation of force feedback generated by
surface tension, enabling users to feel the surface waves and ripples in a 3D perspective.

Therefore, we use a mass-spring model to represent the deformable surface. In
section 2 we said that Nixon and Lobb [NL02] have used explicit mass-spring system, as
shown in Figure 10, but they used the system to represent closed elastic membranes filled
with viscous compressible fluids. A mass-spring system is also used by Miller [MIL88] to
animate the soft bodies of snakes and worms, but it was not considered in the context of
fluid simulations of incompressible flows. Other methods such as Height-Field
approximations only represent a single height-value for each point and it is impossible to
have one part of the surface overlapping another. In addition, level set surfaces are
susceptible to numerical dissipation, and are unable to maintain arcas of high curvature.
There are two reasons for choosing a mass-spring model instead of other computational
models. The first is computational speed as the mass-spring model can be computed in real-
time. The second reason is that mass-spring facilitates the interaction handling between the
fluid and the surface, as they are both discreet implementations that can match the same grid
resolution.

The major drawback of mass-spring model is that its smoothness depends on its grid
size. The more particles the smoother, but the more it will increase computational time.

However, by choosing an acceptable grid size we were able to achieve plausible looking
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deformations. Section 3.2.3 includes a table that clearly shows the maximum resolution

supported on our system.

3.2.1 Deformation Process

Our three-dimensional deformable surface is designed based on a discreet mass-
spring particle system [NMK*05]. Springs have adjustable stiffness and damping constraints
that represent different surfaces. The surface deforms with the touch of a haptic probe and
gives back the resulting forces to the users. By modeling the surface of the fluid as a
deformable surface, we are able to simulate the waves and ripples generated by the
touchable interaction via the haptic interface. The main disadvantage is that the fluid surface
will not be able to tear apart, spill over a container, nor generate splashes, but it will still
permit a visual representation of a wavy surface based on user interaction as drafted on

Figure 32.

Figure 32: Draft of a deformable surface. Weighted particles move according to user’s haptic interaction.

The deformable surface uses the classical fourth-order Runge—Kutta (RK4) method
[COLO00] to solve the ordinary differential equations (ODE) formed by the applied forces

and the constrained spring-network of particles. We saw from section 3.1.3 and Figure 35
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that a spring force is generated at deformation, which is proportional and opposite in

direction to the penetration of the haptic interface point (HIP) beneath the surface (»), such

that force values, f, are calculated by f = —ky . In addition, a damping (friction) force resists
the motion and it is proportional to the velocity j‘ = -bv where b is the damping coefficient

and v is the velocity. Therefore, the total deformation force is f = —ky — by. Combining
with Newton's law of motion f =m.a, and the definition of acceleration as the second
derivative of position a = y" we have the differential equation:

my"= ky_bv 14)

y'=_kiny_bmy' (15)
This 1s the equation of motion, defining what happens to the deformable surface over time.
In order to use RK4, we convert the second order differential equation (15) into a set of first
order differential equations. For this we can write the acceleration as the first derivative of
velocity: y"=V'.

y=v (16)

vi=_kmy_bmv a7n
which is the form we need to use RK4. To begin the simulation, we initialize the two
variables y,v for their value at time t=0. We then use the RK4 algorithm [COL00] to
calculate the values of y,v after a short time interval, and this continues indefinitely. In

summary, the RK4 algorithm 1s as follows. Let an initial value problem be specified as:

V'=f(t,9),y() =y, (18)

Then the RK4 problem is given by the following equation:

Yurt = Va +'g'(k1 +2k, + 2k, +k,) (19)
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where

ky=f@,,y,) (20)
h h

k2 =f(tn +5’yn +—2_kl) (21)
h h

ks = f(2, L +5kz) (22)

k,=f(t,+hy, +hk;) 23)

The parameters have meaning as follows:
* ki is the slope at the beginning of the interval;
* k; is the slope at the midpoint of the interval, using slope k; to determine the value of
y at the point ¢, + 4/2 using Euler’s method;
* k; is again the slope at the midpoint, but now using the slope & to determine the y-
value;

* k4 is the slope at the end of the interval, with its y-value determined using k3.
Thus, the next value (¥,,;) is determined by the present value (,) plus the product of
the size of the interval (#) and an estimated slope. The slope is a weighted average of

slopes. In averaging the four slopes, greater weight is given to the slopes at the midpoint:

k, + 2k, + 2k, +k,
6

slope = (24)

The RK4 method is a fourth-order method, meaning that the error per step is on the order of
I’, while the total accumulated error has order 4*. Note that the above formulas are valid for
both scalar- and vector-valued functions (i.e., y can be a vector and f an operator). In order
to assimilate and get closer to a real-life interaction, we communicate the deformable

surface deformation to all the fluid grid layers that are positioned beneath the surface.
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However, these layers will damp the deformation based on their distance to the surface.
Layers that are farther away from the surface will exhibit a lower deformation than layers

that are closer to the fluid surface. The next section describes this technique.

7
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3.2.2 Damping Layers

Fim 3: Dampe ye;.

In order to interconnect the surface with the fluid and retain the deformation within
the bowl, the applied energy is damped when it travels through the inner grid layers. A layer
is each of the depth rows in a three-dimensional grid, starting from the surface and ﬁnishihg
at the bottom of the bowl. Damping refers to the progressive reduction or suppression of
oscillation in a device or system. Layers that are farther away from the surface will exhibit a
lower deformation than layers that are closer to the fluid surface. The deformable surface
matches the resolution size of a grid layer. This enables a straight-forward coupling between
surface and fluid particles.

In order to achieve this effect, as shown in Figure 33, we need to store the initial
position of the particles when the surface has not yet been deformed. We only need to do
this once, when the system starts. At each scene rendering update, we compute the distance
vector between the stored initial state and the new state of the deformation. Each layer is
assigned a deformation scaling factor based on their properties, including their depth or
distance from the surface. These scaling factors follow an exponential sequence. For each

particle on a layer:

pi=pp+S*d (25)
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where p; is the final position of a particle, p, was the original position of the particle when

the system started, § is the deformable scaling factor for the layer in which the particle

exists, and d is the distance vector between the stored original position and the projected
position if no damping were introduced. The projected position is obtained from the RK4
algorithm described above. We will then use this new acquired information to generate our

texture values at the moment of rendering. This is further explained in chapter 4.

3.2.3 Resolution Trade-Off

In order to represent a fluid, space (either 2D or 3D) is divided into as many cells as
necessary to ensure sufficient precision or resolution in the simulation. Each cell contains
values which represent the fluid (density and velocity).

However, there is a trade-off between fluid accuracy and performance of the system.
The more cells used in the simulation, the more accurate the fluid’s representation becomes,
but the more computations are needed to calculate the state of the simulation. In our system,
a PC with an AMD Opteron™ Processor 252, 2.59 GHz, 2GB in RAM, and an NVIDIA

Quadro FX 3400/4400 card, we reached a stable simulation with a grid of NxNxN, where

N=15.
Table 1: System resolution trade-off.
N NUMBER OF GRID CELLS (NxNxN) SIMULATION TIME (FPS)
30 27000 ~8
25 15625 ~12
20 8000 ~20
15 3375 ~32
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This was the maximum setup permitted to support a reasonable stable and fast real-time
simulation of approx. 32 FPS. If we further increase the size, the deformable surface would
perform too slowly for real-time purposes. If we further lower the size, it may perform faster
but the deformations would not look smooth and the fluid flow would become less realistic.

Table 1 summarizes these findings.

3.3 Coupling Graphics and Haptics Workspaces

Typically, haptic devices are not employed in isolation. They are most often used to
enhance the user experience in conjunction with a virtual 3D graphical environment. In
order to enable haptic interaction, all objects modeled in the graphic workspace also need to
be modeled on the haptic workspace. In order for users to feel what they actually see, the
position of these 3D models needs to match and correspond on the scene. The first issue to
consider when combining haptics with 3D graphics is that the refresh rate for displaying
forces on the haptic device is more than an order of magnitude higher than the refresh rate
necessary for displaying images on the screen. This difference stems from the psycho-
physics of human perception. Typically, a graphics application will refresh the contents of
the frame buffer approximately 30-60 times a second in order to give the human eye the
impression of continuous motion on the screen. However, a haptic application will refresh
the forces rendered by the haptic device at approximately 1000 times a second in order to
give the kinesthetic sense of stiff contact [BASO7]. If the frame rate of a graphics
application is run at a rate lower than 30 Hz, the user may perceive discontinuities in an
animation such that it no longer appears visually smooth. Similarly, the user may perceive

force discontinuities and a loss in fidelity when the haptic device is refreshed at a rate below
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1000 Hz. As a result, haptics and graphics rendering are typically performed concurrently in
separate threads so that each rendering loop can run at its respective refresh rate.

On this matter, the number of deformable surface particles was adjusted to maintain
the stability of the system as explained in the previous section. This is a very important point
to keep in mind, especially in an application where more than one object is moving on the
screen or being felt by the haptic simulation at the same time. The HLAPI [SENSABLE]
allows you to specify geometry for haptic rendering in the same thread and at the same rate
as graphics. It takes care of the 1000 Hz haptics updates for you so that you do not have to
implement any haptic rendering in the 1000 Hz haptics thread or implement state
synchronization between haptics and graphics threads.

A haptic device is a natural interface for a dynamic simulation because it allows the
user to provide both input to the simulation in the form of forces, positions, velocity, etc. as
well as receive force output from the simulation. In our fluid system, we want the tip of the
visual baton to correspond with the Haptic Interface Point (HIP), so that the surface can be
deformed at the right contact point, substances can be added at the right spot, and forces can
be rendered at the correct location. We are interested in rendering immediate force feedback
while maintaining acceptable visual simulation effects.

A dynamic simulation with a haptic device requires special treatment, however. First
a dynamic simulation works by integrating forces applied to bodies. When dealing with a
position controlled impedance style haptic device, such as the kind currently supported by
the OpenHaptics toolkit [SENSABLE], forces are not directly available as input.
Additionally, the mechanical properties and digital nature of the haptic device make it

challenging to directly incorporate as part of the simulation. Combining a haptic device with
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a dynamic simulation tends to be much more approachable and stable if a virtual coupling
technique is used. Virtual coupling introduces a layer of indirection between the mechanical
device and the simulation.

Since there are differences between the graphic workspace and the haptic workspace,
the integration between graphic and haptic workspaces is required. The graphic workspace
and the haptic workspace have different boundary limitations and coordinate systems.
Therefore, the point of intersection between the haptic probe and the fluid surface is
different in both workspaces. The 3D cursor represents the position of the probe as well as
the user’s point of interaction. The fluid surface grid size is defined as an NxNxN cube, and
its coordinates range from [0...N-1] in the X, Y and Z axis. If we want to know which part
of the fluid surface was touched, we need to convert the haptic coordinates into those of the
fluid grid. We want to take advantage of the ample haptic workspace to match the positional

limitations of our fluid grid, as depicted in Figure 34.

. 3
Invisible Real-Life Haptic Workspace Graphical 3D Simulation Grid
Boundaries Boundaries

Figure 34: Matching boundaries between Workspaces.
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To match both workspaces, we first determine the boundaries of the haptic
workspace by moving the probe around and tracing out the virtual proxy position at each
update. We can then record the positions at which we want our simulation to be bounded to.
We then use a mapping function that converts any of the possible haptic virtual proxy

positions to a place in the three-dimensional grid (range from [0...N-1] in the X, Y and Z

axis):
Pex = (((Pax + Maocs)/(Maxes-Mings)) *Nx; (26)
Pey = ((Pry + Maxe)/(Maxp,-Ming,)) *Ny; (27)
P: = (((Py: + Maxes)/(Masy,-Ming)) *Nz; (28)

where Pg is the grid position we want to find, Py is the position of the haptic virtual proxy
we need to convert, Maxy and Ming are the maximum and minimum positions that the
virtual proxy can have, and N is the grid resolution (number of grid cells) at a particular axis.
Based on these conversions, the graphic workspace and haptic workspace are integrated
precisely and it keeps performance in real-time. Figure 25 demonstrates the correspondence
between graphic and haptic coordinates. The HIP position is mapped in order to determine
the cell at which the substance enters the simulation.

In the case of haptics, the sense of feeling something can be improved dramatically
by providing a visual representation of the contact. The trick is to provide the correct visual.
For instance, one common mistake with haptics is to haptically render contact with a rigid
virtual object yet visually display the device cursor penetrating its surface. The illusion of
contacting a rigid virtual object can be made significantly more believable if the cursor is

never displayed violating the contact. In most cases, this is simply a matter of displaying the
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constrained proxy instead of the device position. Haptic cues can also be used to reinforce
visual cues. For instance, it is common for selection of an object to be preceded or
accompanied by highlighting of the object. An appropriate haptic cue can make that
highlighting even more pronounced by providing a gravity well or a localized friction
sensation. In the next chapter we present our approach to haptically and graphically render

the fluid simulation that was acquired through the mechanisms explained in this chapter.
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Chapter 4 Hapto-Visual Rendering Stage

In this research, we would like to achieve a haptically and visually plausible fluid
rendering of our simulation. It is therefore desirable to have a system and method for
rendering a three-dimensional fluid without overtaking the computational burden of the fluid
simulation. In this chapter we present the hapto-visual rendering stage of the system, which
includes descriptions of our graphical rendering and our haptic rendering, and a discussion

on how to bind both approaches together.

4.1 Volumetric Haptic Rendering — Force Feedback

The force feedback calculation is based on the equations of an incompressible
Navier-Stokes fluid simulation explained in previous chapters, which enables the generation
of forces for use with haptic devices. The bowl can also be touched through the haptic
interface, giving the player a sense of boundary limitations for the interaction. In contrast
with conventional haptic systems, our reaction force feedback originates from two main
sources:

(1) Deformable surface — that accounts for elastic forces as well as surface

tension.

(i)  Fluid simulation — provides values for viscosity, density, velocity, and inertia.

The fluid surface is deformed as the haptic probe pushes through it. As explained in
section 3.2, this deformation is gradually transmitted and damped to the lower layers of the
inner fluid based on their depth and fluid density. After a certain pop-through force

threshold, the probe is able to penetrate the surface and interact with the inner 3D fluid.
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Once inside the fluid, the sense of viscosity can be rendered in any direction of interaction as
the probe moves on the three-dimensional scene.

In order to better appreciate the quality of haptic rendering, our interface permits that
the user is able to mix and toggle between different force rendering modes; (i) deformable-
surface mode (ii) viscosity mode (iii) flow mode and (iv) flow-resistant mode. If the user is
feeling the surface and then pushes the probe inside the fluid, the force mode is changed
automatically. Each of these force modes may be enabled or disabled with toggle keyboard
buttons according to the user’s preferences. These force modes focus on particular aspects of

the force feedback:

The deformable-surface mode enables the user to feel the ripples on the fluid surface. The
deformable surface is haptically rendered following the penalty-based method shown on
Figure 15 and Figure 35. The applied force deforms the mass-spring system and generates
surface oscillations. If enough force higher than the surface tension is applied to the surface,
a pop-through threshold lets the probe go through it and access the inner fluid simulation. If
not enough force is applied and the user lets loose of the stylus, the probe will float over the

deformed surface simulating the idle wavy state of the surface.

Initial State

Figure 35: Haptic Collision Response.

R?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This approach to surface haptic rendering uses a spring constant, k, and a displacement
value, y, to generate a spring force which is proportional and opposite in direction to the
penetration of the haptic interface point (HIP) beneath the surface, such that force values, f

are calculated by:

f=-ky (29)
The viscosity mode challenges the user to move around thick fluid. Elastic spring forces are
controlled by stiffness properties that are particular to rigid surfaces, like the walls of a
bowl. However, when the probe enters an area of fluid, the force felt is that of a viscous
force rather than a spring force. The fluid does not actually repel the probe, but just slows
down its stirring movement, according to the density grid computed at the time. The more
substance a grid cell contains, the harder it is to stir through it. This ambient force makes use

of the following commands:

hlEffectd(HL EFFECT PROPERTY MAGNITUDE, var...);

hiEffectd(HL. EFFECT PROPERTY GAIN, var...);

hiTriggerEffect(HL EFFECT VISCOUS),;
The viscous force is based on the current velocity of the haptic device and is calculated to
resist the motion of the haptic device. Specifically the force is calculated using the equation
[LL75]:

f=-kV 30)

where f'is the spring force, V is the velocity and £ is the gain. For simplification, in the name
of interactivity, the gain is proportional to the concentration of substance contained in the
grid cell at which the probe is positioned. For instance, in Figure 34, the position of the HIP

is matched to a cell in the fluid simulation. The amount of density in that cell will determine

the value of k. We can then infer, from this example, that it would be easier to move the
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probe around the corner cells of the grid than in the middle cells of the grid. The magnitude
of the effect force is capped at the value of the effect property
HL_EFFECT_MAGNITUDE. The gain is specified by the property

HL_EFFECT_PROPERTY_GAIN. Higher gains will cause these effects to generate larger

forces.

The flow mode guides the haptic probe, hence the user’s hand, through the velocity field
(Figure 36) so that the user perceives the formed currents. To implement this, we repeatedly
disable and enable HL_ PROXY RESOLUTION in order to setPosition() and readPosition()

of the haptic device.

Figure 36: Fluid flow vector field.

We treat the HIP as an extra particle in the simulation. This lets us know the specific

velocity vector that the particle exhibits at a particular grid cell position. We can then
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instruct the haptic probe to accordingly render a force following the u, v, w components of
that vector. This force approximation makes the assumption that the velocity field can be

characterized by single vectors, so these methods can only generate forces, and not torques.

The flow-resistant mode enables the user to modify the velocity field by applying forces
that resist the current flow. As shown in Figure 37, the effect in this case is an inertia effect,
which simulates a small point mass being dragged around by the haptic device. If the fluid’s
velocity field is running to the left and the user tries to stir to the right, for instance, a higher

force feedback will be felt until the velocity field has adapted itself to the new input forces.

Figure 37: The current flow influences the movement of the haptic probe.

In this case, we follow Newton’s second law of motion, which states thatf =m-a. The
acceleration g is in the direction of the force and proportional to its strength, and is also
inversely proportional to the mass being moved. In our implementation we approach this as:

Sy = Bes ™ (H = P
) =-Py, *P, G

where Hpos and Ppos are the positions of the HIP and the point mass, Syis spring force, Dyis
damper force, Iyis inertia force, Pxs is stiffness coefficient of point mass, Pygp is damping
coefficient of point mass, and P, is velocity of point mass. We then perform a simple Euler

integration of the point mass state, where a is acceleration and d, is delta time:
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a=1,/F,;
B, =F +(a*d,); (32)
Foos = Fpos + (B, *d);

We can then instruct the haptic probe to add the components of the inertiaForce vector to the
rendering force. This implementation makes use of a callback
HL_CALLBACK_COMPUTEFORCE which executes at every timestep and allows the user
to modify current forces based on any custom force that the programmer would like to
implement.

As a result, the system serves as an experimental framework to analyze haptic
experiments for fluid simulations. Some drawbacks of this proposed approach include
limitations on the force values that can be rendered, tradeoffs on real-life physics, and

restrictions on the grid size of the simulation.

4.2 Free-View Volumetric Visualization

A three-dimensional fluid simulation produces volumetric data. Volumetric
rendering is a technique that is very costly in terms of processor time, and which also
requires a great deal of memory to store the data used. In order to visualize the fluid
simulation, different approaches were considered for the rendering process, taking into
account the limitations of OpenGL rendering capabilities. This section presents some of our
experiments such as voxel raytracing and semi-transparent grid rendering that were not
adequate enough for our goals. We then devised a variant of camera-aligned slices to

achieve our objective.

RaA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Voxel Raytracing variant

Similar to the method explained in sectich2.1.1 Voxel Rendering fills the scene
occupied by the 3D grid by rendering a considerable amount of points. The amount of color
for each point is determined by a linear combination of the density values of each of their
grid-cell neighbors. However, this is not a good approach as the rendering appears dusty and
discontinuous. In addition, it reduces performance because of the computations needed for
rendering each point.

Semi-transparent grid rendering

We render smaller alpha transparent cubes that are sorted based on their distance to
the camera. The density value of a grid vertex is used as a cue for its color. The higher the
density, the brighter the color is. Each small cube face interpolates the color of the four
vertices that form it. The result, as shown in Figure 38, allows the user to perceive the
simulation in any three-dimensional angle. However, OpenGL does not support a direct
interface for rendering translucent (partially opaque) primitives. Therefore, transparency
effects may be created with the blend feature and carefully ordering the primitive data.
When using depth buffering in an application, the order in which primitives are rendered is
important. Fully opaque primitives need to be rendered first, followed by partially opaque
primitives in back-to-front order. If objects are not rendered in this order, the primitives,
which would otherwise be visible through a partially opaque primitive, might lose the depth

test entirely, as shown in Figure 39.
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Figure 38: Smaller alpha transparent cubes are sorted based on their distance to the camera. Each small cube
face interpolates the color of the 4 vertices that form it.

Figure 39: Rendering artifacts produced by alpha-blending when faces are not sorted by distance to the
camera.

In order to properly sort faces, we need to port grid coordinates from the “local
space” to a “world space”. To do this, we need to obtain OpenGL’s ModelView matrix, and
multiply each vertex by the transformations present in this matrix. The ModelView Matrix,
as shown in Figure 40, is present in OpenGl for the purpose of transforming vertices into eye
coordinates. OpenGl then multiplies these coordinates with the Projection Matrix to obtain

the 2D screen coordinates of the objects represented in the scene.
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 vertices———»{  Model View

Figure 40: OpenGL’s transformation matrices.

We can obtain the corresponding matrix by invoking
glGetDoublev(GL_MODELVIEW _MATRIX, mvm); and storing it in GLdouble mvm[16].
Let us take into account that RotationFromMatrix(mvm) will return the fields m[0], m[1],
m([2], m[4], m[5], m[6], m[8], m[9], m[10], from the ModelView Matrix[16]; while,
TranslationFromMatrix(mvm) will return the fields [m[12],m[13],m[14]] from the same
matrix. For each particle we can then get its world-space coordinate with the following

formula:
WorldCoord=RotationFromMatrix(mvm) *ObjectCoord +TranslationFromMatrix(mvm);

The following summarizes this experimental rendering algorithm:
1. Describe Vertex Connections: At system start, we store each vertex position in an
array and we specify for each vertex the number of faces it is connected to. There are

four types of vertices in our cubical grid:
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Figure 41: Types of Vertices in a Cubical Grid.

2. Convert each vertex position to “world-space” coordinates using the formula
presented above.
3. Sort vertices by their current “depth” coordinate.
4. For each sorted vertex, from back-to-front:
a. Draw the faces that are connected to the vertex (see Figure 41).
b. To avoid flickering, flag each drawn face so that it does not get rendered a

second time.

The result is a semi-transparent grid in which the fluid simulation is shown. Colors are
interpolated in-between faces giving a smooth visualization of the fluid flow. However, this
approach still shows the walls of the three-dimensional grid, as shown in Figure 38 (Left).
Therefore, it is not suitable for our graphical rendering purposes as we would like to have a
smoother looking fluid. As a result, we devise a camera-aligned deformed texture rendering

approach in order to achieve our smooth graphical rendering.
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CAMERA-ALIGNED DEFORMED TEXTURE RENDERING

This approach consists of slicing the 3D grid into planes that are parallel to the camera
view (see Figure 43). We apply gradual alpha transparency to the slices and sort them based
on their distance to the camera.

To get our planes, we first find the cube vertex that is closest to the viewer. Our slices
are then defined by the plane equation a*x + b*y +c*z + d = 0 where (a,b,c) is the plane
normal given by the view direction; and d is the parameter along the view direction. The
first d is given by inserting the previously found vertex into the plane equation. For each
subsequent slice, we get the intersection points of all cube edges with the given plane that lie
within the cube. We sort these points to get a convex polygon and draw it on the screen. The
result will be a set of camera-aligned planes that will be used to bind a 3D texture
representing the state of our fluid simulation.

As shown in Figure 42, a 3D texture is a series of (width * height * depth * bytes per
texel) bytes where width, height, and depths are powers of 2. It may be thought of a series of
two dimension textures where an extra parameter (depth, the R texture coordinate) specifies
which 2D texture will be used. Notably, like other texture coordinates, the R-coordinate is
not required to be an integer, the (closest 2 texels) ~ (3 dimensions) = 8 texels will be

accounted for in the calculation based on the selected filter scheme.
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Figure 42: Architecture of 2 3D texture.

3D texturing is not part of the standard OpenGL libraries and has to be loaded at run-
time. Fortunately, “glexth” defines a pointer type called PENGLTEXIMAGE3DPROC
specifically for this purpose. After setting up 3D texturing we can use the giTexImage3D
function to create our textures. Similar to creating a 2D texture object, the steps to creating
an OpenGL 3d texture object are as follows:

1. Load or generate the texels.

Get a name for the texture from OpenGL.
Bind to this name.

Specify the wrapping, filtering, and any other parameters.

wok kN

Finally, call glTexImage3D.

At every time-step we construct a 3D texture based on the fluid simulation data, and
proceed to texture the slices with this information. The texture color is based on the density
of the fluid grid cells. The higher the density, the brighter the color is. The texture alpha
channel is also adjusted based on density values during the simulation. The lower the
density, the more transparent the color is. However, we also need to account for surface
deformations. Therefore, we modify this algorithm in order to simultaneously visualize
surface changes. As the haptic probe injects forces that deform our surface, the applied

energy is damped when it travels through the inner grid layers. As shown in Figure 43, we
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compute these changes in deformation, according to the algorithm described in section 3.2.2

and alter our textures accordingly. We then render the surface haptically to enable user

interaction, and visually show the deformations.

Figure 43: Texture represents changes in fluid caused by surface deformations.

As shown in Figure 44 (left), a keyboard button lets us toggle the visualization of the
deformed mass-spring system. Notice that a damped fluid deformation follows the surface
oscillations in Figure 44 (right). As the user rotates the scene, the slices are re-aligned so the

user is able to perceive the simulation in any three-dimensional angle.
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Figure 44: Samples of our rendering approach results. (a) With surface guide. (b) Without surface guide.
The previous two sections presented our approach to render the fluid simulation in both
visually and haptically manners. To summarize as an example, the following table presents a
contrast between our presented approach and that of Dobashi’s and his team [DSH*06],

mentioned in section 2.4.

Table 2: Comparison with Dobashi’s Approach.

Dobashi et al. Approach Our Approach

Forces are pre-computed and storedina | Forces are computed in real-time based on
Database. Pre-computing is biased as it is a grid-based numerical fluid simulation.
hard to store and predict every possible | Therefore, output forces correspond to real-
outcome of a simulated fluid. time calculations.
Surface represented by HeightField Surface represented by a deformable
approach. It only permits one height value surface, which permits multiple height

at each location on the plane. values at a location on the plane.

. . Intended to be used on personal computers
Intended to be used with large haptic setup . . .
. or laptops with desktop haptic devices
equipment only available to research labs. .
available on the mass market.

) Ease of setup is beneficial for more general
Applications need to be accustomed to o
) ) and marketable desktop applications such
their large and specific VR setup. )
as video-games.
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In addition, the following table also summarizes the differences between our presented

approach and that of Baxter’s and Lin’s [BL04].

Table 3: Comparison with Baxter and Lin's Approach.

Baxter and Lin’s Approach

Our Approach

Real-time haptic display of fluids in two
dimensions by directly solving Navier-

Stokes equations.

Real-time haptic display of fluids in three
dimensions by solving Navier-Stokes

equations.

Method does not explore volumetric haptic
interaction, nor addresses 3D issues like

volumetric rendering.

We explore volumetric rendering of fluids
and their haptic interaction in a volumetric

space.

The HIP is modeled as a discretized object
by using grids, causing undesirable noise in

the resulting force.

The HIP is treated as an extra particle in
the simulation which offers more control

over the rendering of forces.

Their painting example presents blobs of
viscous fluid on a two-dimensional plane in
a three-dimensional space. It does not

account for surface waves.

Our videogame example presents a fluid in
motion in volumetric space along with its
deformable surface, for a more fluid-

immersive experience.

Their application only renders forces that
result from brushing paint blobs on a

surface. It does not render fluid currents.

We additionally explore haptic ambient
forces to represent differences in fluid

densities across a volumetric fluid flow.

The next section discusses the coupling between both routines and how the application

needs to handle their integration.

4.3

Integration of Hapto-Visual Rendering Routines

In order to combine our haptic and graphic rendering approaches, we need to
integrate functionality from C++, OpenGL®, OpenHaptics, and a 3Ds Loader Module to

load the 3D mesh of our stone bowl [AUTODESK]. OpenHaptics, introduced by Sensable
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[SENSABLE], is the main SDK used to code Haptics in our system. The OpenHaptics
toolkit includes the Haptic Device API (HDAPI), the Haptic Library API (HLAPI), Utilities,
and the PHANTOM Device Drivers (PDD).

The HDAPI provides low-level access to the haptic device, enables haptics
programmers to render forces directly, offers control over configuring the runtime behavior
of the drivers, and provides convenient utility features and debugging aids. The HLAPI
provides high-level haptic rendering and is designed to be familiar to OpenGL API
programmers. It allows significant reuse of existing OpenGL code and greatly simplifies
synchronization of the haptics and graphics threads. The PHANTOM Device Drivers
support all currently shipping PHANTOM devices.

HLAPI follows traditional graphics techniques such as those found in the OpenGL
API. Adding haptics to an object is a fairly trivial process that resembles the model used to
represent the object graphically. Tactile properties, such a stiffness and friction, are similarly
abstracted to materials. The HLAPI also provides event handling for ease of integration into
applications.

For example, when using HDAPI, creating a haptic/graphics sphere involves writing
the graphics code and creating scheduler callbacks for handling the sphere forces. When
using HLAPI, the process involves creating a graphics sphere then calling #/BeginShape()
with the desired haptic shape type when drawing the graphics sphere. A typical HLAPI

program has the structure of Figure 45.
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Figure 45: HLAPI Program Structure.

First, the program sets up OpenGL by creating a graphics rendering context and
tying it to a window. Then it initializes the HLAPI by creating a haptics rendering context
and tying it to a haptic device. Then the program specifies how the physical coordinates of
the haptic device should be mapped into the coordinate space used by the graphics. This
mapping is used by the HLAPI to map geometry specified in the graphics space to the
physical workspace of the haptic device, as explained in the previous chapter. Next, the
application renders the scene graphics using OpenGL. Then the program processes any
events generated by the haptics rendering engine such as contact with a shape or a click of

the stylus button. Then the haptics are rendered, usually by executing nearly the same code
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as for rendering the graphics, but capturing the geometry as a depth or feedback buffer
shape. In addition to rendering scene geometry, a 3D cursor is rendered at the proxy position
reported by the HLAPI. Finally, the rendering loop continues by rendering the graphics
again. Forces can also be visually appreciated by looking at the color of the baton during the
simulation. These colors are dynamically modified according to the rendered forces. Users
are able to associate the physical force feeling with the visual cue: a green shaded baton for
light forces, a yellow color for moderate forces, and red for strong forces. In a typical
program, h/BeginFrame() is called at the top of the rendering loop, so that any objects in the
scene that depend on the haptic device or proxy state have the most current data.
hlEndFrame() is called at the end of the rendering loop to flush the changes to the haptic
rendering engine at the same time that the graphics are flushed so that two will be in synch.
At the start of the haptic frame, hlBeginFrame() samples the current haptic rendering state
from the haptic rendering thread. hlEndFrame() will commit the rendered haptic frame and
will synchronously resolve any dynamic changes by updating the proxy position. The

following is a summary table of the main differences between HD and HL.

Table 4: Main differences between HDAPI and HLAPI.

HD HL

* A low-level foundational layer for haptics | * Designed for high-level haptics scene
rendering rendering.

» Enabling to send force and read ADC * Built on top of the HDAPI

manually. » Providing a higher level control of haptics
» Modifying the rate of servo loop than HDAPIL

* Designed for ease of use

aR
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4.4 Validation

We conducted a study to validate our results and get various users perspectives on
our system. Ten adults participated in the study. Most were students at our university, from
Master and Ph.D programs. A few had technical backgrounds of haptics: two had heard of
the concept of haptics but had never used a device before, six had used haptic devices before
but had no programming knowledge of them, and two had programmed with haptics before.
Of the 10 participants, 2 had never heard of fluid simulations before, 7 knew about them but
had no knowledge of their techniques and 1 was familiar with common simulation methods.
All the participants were fairly comfortable with using computers and were able to follow
the assigned tasks thoroughly. The participants were presented with ten tasks to perform in
our application. They were also presented with a list of different keyboard commands that
they could use at any time to toggle between the different functionalities of the system:

Left-click mouse and drag around to change camera viewpoint

‘ESC’ or ‘Q’ — Quit Program

‘1>~ add substance type 1 (red)

‘2> —  add substance type 2 (green)

‘P’ — toggles pop-through surface (apply enough force to enter inner fluid)

‘A’ — toggles bowl visibility

‘S’ — toggles visibility of deformable surface

‘D’ — toggles haptic rendering of density values

‘F* — toggles haptic rendering of fluid flow (current)

‘G’ — toggles recognition of gestures

After a task was performed, they rate the hapto-visual experience from 1 to 5; 1
being the lowest and 5 the highest rating. In addition they could give open comments on

their experience and offer ideas for future features. The following table summarizes the

results of the survey.
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Table 5: Summary of survey findings.

Task\Rating 1 2 3 4 5 AVG.
* Colliding with the walls of the cauldron. 0 01 3 6 45
* Colliding with the deformable surface. 0 0 2 3 5 43
* Feeling the surface ripples. 0 03 52 39
* Feeling the viscosity of the fluid. 0 0055 45
* Feeling the current generated by the fluid flow. 00415 41
* Visualizing the mixture of multiple substances. 0 00 3 7 47
* Visualizing the motion of the fluid. 0 00 4 6 46
* Performing haptic gesture recognition. 0 00 3 7 47
* Experiencing fluid parameter changes when recognition is 0 01 3 6 45
successful. )
* Overall Application as an interactive tool to haptically and 0 0 0 6 4 44

visually represent a fluid simulation of multiple substances.

A first-time haptic user was surprised by how much more satisfying and engaging a

user interaction can be when more than one sense is involved. The audience commented on
how well the combination of fluid modeling and force feedback made for a realistic
interaction with the scene. The highest average score was related to the visualization of
multiple substances being mixed and the ability of the system to recognize their gestures.
The lowest average score was related to the feeling of surface ripples. However, we think
that this was mainly due to the participant not introducing enough forces that could generate
ripples and oscillations. If the fluid surface were to be at rest, there would be no ripples or
oscillations to feel and not many users generated them in a large amount to feel them clearly.
Differences in participant answers may also be due to the system’s lack of usability guides
such as GUI menus and ease of navigation. Overall, the participants enjoyed feeling the
physical characteristics of the fluid simulation in real-time and we determined that this

added a dimension of interaction that traditional interfaces do not offer.
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Chapter 5 Enhanced User Interaction Application —
Gesture Recognition

This chapter describes how this haptic interactive system can be
enhanced by integrating it with haptic gesture recognition. If a
gesture is recognized, different simulation parameters can be
changed automatically within the same system. This is not our

main research for this thesis, but it is a further step to show the

potential of the haptic-game interaction where a user’s motion

Figure 46: Game Scenario  and behavior may serve as input for a controlled virtual world.

Figure 47: Creation of the master gesture and the comparable gesture.

A possible application can be a game situation in which the player impersonates the role of a
witch, as shown in Figure 47. Following a specific recipe, a magic potion needs to be
created. It would require the right ingredients, mixed at the right moment, with the proper
stirring movements and force. Once the player succeeds, the system is able to trigger
customized modifications to the properties of the fluid simulation and the deformable
surface. The fluid might change color, viscosity and elasticity parameters among other

characteristics. In addition, it also enables to trigger another fluid body simulation such as
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smoke buoyancy on top of the liquid. The decision might be made through a haptic motion
recognition module as one of possible ways that will allow game developers to take full
advantage of the high degree-of-freedom input capabilities of modern haptic devices.

Haptic devices provide more valuable parameters (force, torque, velocity, etc.) than
conventional graphics users interfaces. It does allow us not only to recognize 3D
coordinates, but also to use force-feedback data as extractable features. These parameters are
used to raise the recognition rate of user motions. For instance, a harsh circular movement
will be recognized differently than a gentle circular movement. Even though these are both
circular movements, different forces were applied. Haptic biometric behavioral applications
[OE05] show the importance of force and torque for the purpose of recognition. We present
how to recognize a few simple figures, also known as gestures, which would trigger the right
potion spell, for instance, three consecutive circular motions or the shape of a star. This
would reduce the complexity of the task, and therefore it would be more feasible for the
recognition to be performed in real-time, parallel to the haptics and graphics fluid
simulations.

The recognition m(;dule has two main steps; (i) train and (ii) test. For each step, we
perform feature extraction and classification, which are used for similarity measurement.
The system is prepared in advance with a train set as a off-line process and whenever a user
performs a test motion, the similarity is measured between the train motion and the test
motion to decide if it is the correct motion or not. Our implementation follows
Dopertchouk’s concepts of motion recognition [DOP07] and is organized in three major

steps: Creation and storage of the master gesture templates as a train set, normalization of
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the test strokes as feature extraction process, and recognition of the test motion shapes as

classification process.

5.1 Creation and Storage of the Master Gesture Templates

The gesture templates are recorded from predefined sample haptic inputs. We read
the proxy position of the haptic device and store the 4D coordinates as a sequence of points
in the workspace, mainly x, y, z and force data (see Figure 47). When players stir the potion
mix, some of the gesture shapes may be different in size, speed, or position. Even thought
the shape results might look similar to the naked eye, these shapes would look like
completely unrelated sets of coordinates to the computer. Therefore, we need to normalize

the captured strokes, as shown in Figure 48.

»

/

Figure 48: Gestures must be normalized in order to have unbiased comparisons.

N
&
v

In our system, the user is able to record a train gesture by pressing the white button of the
haptic device. As shown in Figure 47 (left), the recorded gesture will appear in green, at the

center of the screen.

5.2 Normalization of the Strokes

First, we need to scale the gesture to a predetermined size (e.g. 1 unit). We do this by

finding the length and dimensions of the gesture, and dividing its coordinates by the scaling
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factor. Second, we need to put the individual points in the gesture at a uniform distance. We
do this through a dynamic time warping algorithm [MR81]. Since we are interested in the
geometric shape in this specific application, it would be irrelevant to know how fast or slow
the gesture was drawn. Finally, we need to center the gesture at the origin of the coordinate

system through a translation matrix, as shown in Figure 49,

o

Figure 49: Center the gesture at the origin of the coordinate system.

5.3 Recognition of the Test Motion Shapes

We compare two different approaches for the haptic recognition of the gestures: a

neural network, and a simpler linear algebra method.

5.3.1 Neural Network

Simple shape recognition was performed through the implementation of a neural
network-based recognition engine, using an approach similar to others [BOUO07] [MT91],
whom also provide good introductions to neural networks. A similar feature extraction
procedure was used. However, haptic proxy positions were converted to directional vectors
(e.g. Right: 1,0,0; 1,0,0; ...). A back-propagation algorithm was used to train the neural
network with a few basic shapes, run as many epochs and find the minimum sum-of-squares

error (SSE) [BIS95] constraint. However, this method proved to be cumbersome to perform
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in respect to the additional marginal benefit that we would get in the recognition phase. It

would be more time-consuming to integrate a new predefined gesture into the system, as the

network would need to be retrained.

5.3.2 Dot Product

A simpler linear algebra method, dot product between two vectors, also provide the
measure the similarity between train vector and test vector. Since both our gesture templates
and captured strokes have the same number of points after normalization, we model our
gestures as normalized vectors. These are 4XN dimensional vectors, where N 1s the number
of points in the gesture. Using this technique, if you compare two normalized vectors that
are exactly the same, the result will be one. The result will be a value slightly less than one
for vectors that point in more-or-less the same direction, and the result will be a low number
for vectors that point in different directions. This dot product approached worked well for
simple shape matching and it did not slow down any of the haptic fluid nor the deformable

surface computations.

5.4 Recognition Results

From a set of three basic motions (e.g., circle, V shape, and S shape), this module
was able to reach recognition rates above 95% for both recognition approaches. In our game
scenario, the dot product approach seemed effective enough to recognize potion shapes.
Neural networks also provided acceptable gesture recognition rates, but the time allocated

for network retraining is cumbersome and tedious for gaming purposes.
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Figure 50: Recognition triggers changes in fluid parameters (e.g., fluid viscosity increase) plus appearance of
buoyant smoke.

SIMULATION AFTER RECOGNITION

Smoke. Workspace Once the gesture has been successfully recognized, we can

change the parameters of the simulation on-the-go (see Figure

50). We can make the fluid more viscous, change its colors,

and make the deformable surface less elastic so it resembles
thick clay. We also trigger the simulation of smoke above the
surface as our system is flexible enough to accommodate

multiple fluids as long as the speed permits real-time

Figure 51: Different fluid

ation.
workspaces. calculation

The smoke in the air is a separate fluid simulation that takes buoyancy into account.
Buoyancy is the upward force on an object produced by the surrounding gas. The smoke
also follows the same rendering approach as the fluid, creating a separate 3D texture and
binding it to camera-aligned slices. As shown in Figure 51, both liquid and smoke
workspaces are combined with the deformable surface in between them. When we trigger
the gas simulation, grey substances are added to the lower layer of the smoke workspace and

an upward velocity continuously raises them in the air simulating buoyancy. This velocity
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can be represented as: v, =v, +d*b,, where v, is the current velocity component in the up

direction, d is the amount of grey substance and b; is the buoyancy constant. We are able to
change the simulation parameters to represent different scenarios. In our example
application, the liquid workspace shows a high viscosity of 0.6 while the smoke shows a low
viscosity of 0.1 with a buoyancy constant of 0.2. The result in this example scenario is a
thick movement of fluids under the surface, and a light movement of smoke above the
surface. The source location of smoke density is randomly generated on the lowest layer of
the smoke workspace near the surface. This is beneficial as it generates a nice visual effect

in which smoke is sparse across the airspace of the system, as shown in Figure 52.

WL ST COM

1= Posg+d
ey

Figure 52: Smoke above the surface.

The smoke workspace relates to the fluid workspace in that they share the surface
deformation information. As shown in Figure 52 and in Figure 53, the smoke source
location is also translated based on the surface deformation information in the same manner
we explained for the inner fluid. In this manner we can think of the deformable surface as
the border between the fluid workspace and the smoke workspace. Figure 53 (left) shows the
different workspaces being integrated together. While the deformable surface sits on top of

the liquid workspace, the smoke surface sits on top of the deformable surface. Initially, as
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there are no deformations, the smoke source comes from the surface at rest. Once
deformations are introduced by the haptic device, the source gets translated based on the

damped surface oscillations, as perceived on the right of Figure 53.

INTEGRATION OF DEFORMABLE SURFACE WITH SMOKE AND LIQUID WORKSPACES

30 wiew

Deformable Susface Soins Transtation and Datuping

Togsther

Apply forces

>

wia haptics

Lipsid Workspace

P,
#

Fat Swmface Deformed Surface

C7in

Haptic Device

Figure 53: Surface integration with fluid and smoke workspaces.
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Chapter 6 Conclusions

We have presented a novel human-computer system based on haptic-fluid
interaction. Based on the Navier-Stokes equation, the system simulates three-dimensional
fluid flow in real-time. Different calculation grids are maintained to enable the mixture of
multiple substances. A discreet mass-spring particle system represents the deformable
surface. In order to interconnect the surface with the fluid and retain the deformation within
the bowl, the applied energy is damped when it travels through the inner grid layers. Both
graphics and haptics workspaces are coupled in order to match the hapto-visual interaction.
The system haptically renders physical forces generated by the stirring movements and fluid
density changes. In viceversa, the device inserts back forces that modify the fluid flow. In
addition, we have presented a volumetric rendering approach to couple the three-
dimensional fluid with its deformed surface. We made use of lighting, blending, and shading
effects to appreciate the animated fluid ripples. As an example application, we have
demonstrated a game scenario combined with haptic gesture recognition along with multiple
fluids co-simulations and automatic fluid parameter updates. Finally, our user-study showed
haptic-interaction with virtual fluid pioneering a new attractive area.

This chapter concludes the research documented in the preceding chapters. Section
6.1 lists the contributions made by this thesis. Section 6.2 discusses the limitations of the

proposed methodology, and Section 6.3 suggests future research.

1N9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.1 Contributions

The following contributions were made in this thesis:

* Developed a real-time 3D fluid simulation.

* Developed a haptic user interface with fluid as a way to enhance Human-
Computer interactions in a wide-range of applications.

* Developed techniques to haptically render the properties of a fluid in motion
by representing forces that originate from the Navier-Stokes equation.

* Showed a volumetric rendering approach to couple a three-dimensional fluid
with its deformed surface.

* Developed a technique to simulate the mixture of multiple substances into a

fluid simulation.

6.2 Discussion

The proposed scheme has many benefits, including the ability to see and feel the
properties of a three-dimensional fluid simulation in real-time. However, the maximum
amount of forces that desktop haptic devices are capable of rendering may not reach the
intensity of those found in the real world. As a consequence, forces need to be scaled and
results become approximations of real world parameter values. Secondly, the system
complexity should be simplified in order to keep up with real-time requirements. This
results in less accurate rendering as we trade off accuracy for real-time speed. Additionally,
grid size resolution also exhibits a trade-off between rendering quality and computational
complexity. Therefore, resolution should be dynamically selected in a way for the system to

provide users with an acceptable rendering, in which hardware-dependent computational
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time fits within frame time. This offers better rendering quality for users with more powerful

hardware systems; however, it is considered to be a limitation for users working in less

powerful machines.

6.3 Future Research

The research documented in this thesis lays the groundwork for many areas of future
research. Many topics may be pursued to extend this work.

* Haptic gesture recognition: The orientation and workspace of the Phantom series of
haptic devices allow the users to make natural, human gestures using a stylus. In the
future, it would be interesting to keep exploring the haptic gesture recognition
module of the project to produce more various effects on the fluid within game
scenarios. In our wizard story, even the idea of waving a haptic stylus through the air
in order to cast spells is appealing in that it makes the player feel as if they really are
wizards.

» Construction of breakable fluid surfaces: It is to generate splashes and fluid spills for
more dynamic fluid simulation. Alternate non-grid algorithms could be used such as
smoothed particle hydrodynamics (SPH).

* Fluid interaction with higher boundary treatments.

* GUI: Based on the feedback received on our user study, it would be beneficial to
implement a more user-friendly Ul in order to enhance the navigation of hapto-fluid

applications and facilitate the user interaction with the system.
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Appendix A: Solver Code

This section is devoted to provide programming fragments, which were used to solve
various problems mentioned in the main chapters. We show snippets of code for different
routines such as indexing macros, adding a substance to the density, diffusing, advecting,
projecting, and advancing the density and the velocity for a time-step.

* Indexing macro: the array elements are referenced using the following macro:
$define IX(i,j) ((i)+(N+2)*(j)) in 2D, or

#define IX(i,3,k) ((i) + ((N)+2)*(J) + ((N)+2)*((N)+2)*(k)) in 3D.
For example cell (i,,k) of the horizontal component of the velocity is given by the entry
u[IX(i,j,k)]. We also assume that the physical length of each side of the grid is one so that

the grid spacing is given by h=1/N.

e Addition of the substance to the density.

void add source ( int N, float * x, float * s, float dt )
{

int i, size=(N+2)* (N+2)*(N+2);

for ( i=0 ; i<size ; i++ )} x[i] += dt*s[i];

» Diffusion: It uses a simple iterative solver which works well in practice.

void diffuse (int N,int b, float * x, float * x0, float diff, float dt)

int 1, j, k, 1;
float a=dt*diff*N*N*N;
for (1=0; 1<20; 1++)
{
for (k=1; k<=N; k++)
{
for (j=1; j<=N; j++)
{
for (i=1l; i<=N; i++)
{
X[IX(i,j,k)] = (XO[IX(i,j,k)] + a*(
X[IX{(i-1,3,k)I1+x[IX(i+1,3,k)]+
X[IX(i,3-1,k)1+x[IX(1i,j+1,k) 1+
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RIIX(1,3,k-1) J+x[IX(1,3,k+1) 1))/ (1+6%*a);

}
}
set_bnd(N,b,x);

* Advection. We use a simple linear back-trace.

void advect (int N, int b, float * a0, float * al, float * u,float * v,
float * w, float dt )

{
int i, j, k, i0, jO, k0, i1, 31, k1:

float sx0, sx1, sy0, syl, sz0, szl, v0, vl;
float xx, yy, zz, dt0;

dt0 = dt*N;
for (k=1; k<=N; k++)
{

for (j=1; j<=N; Jj++)
{
for (i=1; 1i<=N; i++)
{
XX i-dtO*ulIX(i,3,k)];
Yy J-dtO*v{IX(i,3,k)];
zz = k-dtO*w[IX(i,]j,k)];
if (xx<0.5) xx=0.5f;
1f (xx>N+0.5) xx=N+0.5f; i0=(int)xx; 11=1i0+1;
1f (yy<0.5) yy=0.5f;
1f (yy>N+0.5) yy=N+0.5f; JjO0=(int)yy; Jl=j0+1;
if (zz<0.5) zz=0.5f;
if (zz>N+0.5) zz=N+0.5f; kO=(int)zz; kl=k0+1;
sxl = xx—-1i0; sx0 = 1-sx1;
syl = yy-j0; sy0 = 1l-syl;
szl = zz-k0; s20 = 1-sz1;
vl = sx0*%(sy0*al[IX(1i0,]J0,k0)]I+syl*al[IX(i0,31,k0)1)+
sx1* (sy0*al[IX(1i1,30,k0)1+ syl*al[IX(1il,31,k0)1);
vl = sx0*(syO0*al[IX(i0,]0,k1)]+syl*al[IX(i0,71,k1)]1)+
sx1* (sy0*al [IX(il,]30,kl)]1+syl*al[IX(i1l,31,k1)]);
a0[IX(i,j,k)] = sz0*v0 + szl*vi;
}

il

}
}
set _bnd(N,b,a0);

* The projection step:

void project ( int N, float * u, float * v, float * w, float * p, float *
div )
{

int i, j, k, 1;

float h;

h = 1.0£/N;
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for (k=1; k<=N; k++) {
for (j=1; j<=N; J++) {
for (i=1; i<=N; i++) {

div([IX(i,J,k)] = -h*(
u[IX(i+1,j,k)]—u[IX(i—l,j,k)]+
v[IX(i,j+1,k)]-—v[IX(i,j—l,k)]+
wlIX(i,3,k+1)]-wl[IX(i,3,k-1)1)/3;

p[IX(i,j,k)] = 0;

}
}
set _bnd(N,0,div); set bnd(N,0,p);
for (1=0; 1<20; 1++)
{
for (k=1; k<=N; k++) {
for (j=1; j<=N; j++) {
for (i=1; i<=N; i++) {
p[Ix(l,j,k)] = (diV[IX(i,j,k)]‘l’
PIIX(i-1,3,k) 1+p[IX(i+1,5,k) 1+
plIX(i,3~1,k)]+p[IX(i,3+1,k) ]+
pl{IX(i,3,k-1)1+p[IX(i,3,k+1)]1)/6;

}
}
set_bnd(N,0,p);
}
for (k=1; k<=N; k++) {
for (j=1; j<=N; J++) {
for (i=1; 1i<=N; i++) {

ulIX(i,j,k)]) —= (p[IX(i+l,],k)]-p[IX(i-1,3,k)1)/3/h;
vI[IX(i,3,k})] -= (p[IX(i,J+1,k)]-p[IX(i,3-1,k)])/3/h;
wlIX(i,3,k)] -= (p[IX(i,],k+1)]1-p[IX(i,],k~1)])/3/h;

}
}
}
set_bnd(N,1,u); set bnd(N,2,v);

* Advance density in a time-step: We assume here that the substance densities are

initially contained in the x0 array.

void dens step ( int N, float * x, float * x0, float * u, float * v, float
* w, float diff, float dt )
{
add_source ( N, x, x0, dt );
SWAP ( x0, x ); diffuse ( N, 0, x, x0, diff, dt );
SWAP ( x0, x ); advect ( N, 0, x, x0, u, v, w, dt );
}

where SWAP is a macro that swaps the two array pointers:
#define SWAP(x0,x) {float * tmp=x0;x0=x;x=tmp;}
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* Advance velocity for a time-step: Assuming that the force field is stored in arrays 0,
v0 and w0, we have the following:

void vel step ( int N, float * u, float * v, float * w, float * ul, float
* v0Q, float * w0, float * x, float * x0, float visc, float dt, bool air )
{

__isAir = air;

add_source ( N, u, u0, dt };
add_source {( N, v, v0, dt };
add source ( N, w, w0, dt };

if(air==true) add buoyancy(dt,v,x);

SWAP ( ul, u );

SWAP ( v0, v ):

SWAP ( w0, w };

diffuse ( N, 1, u, ul, visc, dt )
diffuse ( N, 2, v, v0, visc, dt )
diffuse ( N, 3, w, w0, visc, dt )}
project ( N, u, v, w, u0, v0 };
SWAP ( u0, u ):

SWAP ( v0, v )

SWAP ( w0, w );

advect ( N, 1, u, u0, u0, v0, w0, dt ):
advect ( N, 2, v, v0, u0, v0, w0, dt );
advect ( N, 3, w, w0, u0, v0, w0, dt );
project ( N, u, v, w, ul, v0 );

~. N

~
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Appendix B: System Video Storyboard

ufstion throagh a oo

User interacts with the simulation through an Omni [SENSABLE] haptic device.

User is able to feel the surface tension and enter the fluid.
Screenshot shows surface deformations and mass-spring mesh visibility.

User is able to view scene from any 3D angle,
and to toggle visibility of bowl and surface mesh.
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ks b

Real-time fluid simulation of multiple substances. A red and green substance are mixed
together generating orange blends.

System can haptically render the flow current, v1$ity, surface tensi, and other
properties at the surface and at any cell inside the fluid. Screenshots show the haptic device
following the circular motion of the current flow without applying human force.

A circular gesture is performed by the user and the system recognizes it as a valid motion.
Smoke is simulated above the surface.
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